Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1243:50fcf7f047d1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Mar 2023 06:19:42 +0900 |
parents | e843ace90b31 |
children | a7dfcbbd07ff |
files | src/generic-filter.agda |
diffstat | 1 files changed, 39 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Mon Mar 13 13:32:22 2023 +0900 +++ b/src/generic-filter.agda Tue Mar 14 06:19:42 2023 +0900 @@ -172,9 +172,11 @@ -- \-⊆ -P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) +P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 + → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q )) + → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p))) → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C ) -P-GenericFilter P L p0 L⊆PP Lp0 NEG C = record { +P-GenericFilter P L p0 L⊆PP Lp0 CAP NEG C = record { genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x) ; f⊆L = gf01 ; filter1 = ? ; filter2 = ? } ; generic = λ D cd → subst (λ k → ¬ (Dense.dense D ∩ k) ≡ od∅ ) (sym gf00) (fdense D cd ) } where @@ -217,9 +219,42 @@ gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y xpy ) ... | case2 xqy = PDN.pn<gr Pq _ xqy - ... | tri≈ ¬a refl ¬c = record { z = xp ; az = Pp ; x=ψz = trans (cong (&) gf17) peq } where + ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∩ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = gf22 } ; x=ψz = gf23 } where + gf22 : odef L (& (* xp ∩ * xq)) + gf22 = CAP (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pp)) (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pq)) + gf21 : (y : Ordinal) → odef (* (& (* xp ∩ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y + gf21 y xpqy with subst (λ k → odef k y) *iso xpqy + ... | ⟪ xpy , xqy ⟫ = PDN.pn<gr Pp _ xpy + gf25 : odef L (& p) + gf25 = subst (λ k → odef L k ) (sym peq) ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) )) + gf27 : {x : Ordinal} → odef p x → odef (P \ * xp) x + gf27 {x} px = subst (λ k → odef k x) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) peq)) px + gf23 : & (p ∩ q) ≡ & (P \ * (& (* xp ∩ * xq))) -- != P \ (xp ∪ xq) + gf23 = cong (&) ( ==→o≡ record { eq→ = gf24 ; eq← = gf30 } ) where + gf24 : {x : Ordinal} → odef (p ∩ q) x → odef (P \ * (& (* xp ∩ * xq))) x + gf24 {x} ⟪ px , qx ⟫ = subst (λ k → odef (P \ k) x) (sym *iso) ⟪ L⊆PP gf25 _ (subst (λ k → odef k x) (sym *iso) px) , gf26 ⟫ where + gf26 : ¬ odef (* xp ∩ * xq) x + gf26 npx = proj2 (gf27 px) (proj1 npx) + gf30 : {x : Ordinal} → odef (P \ * (& (* xp ∩ * xq))) x → odef (p ∩ q) x + gf30 {x} pxp with subst (λ k → odef (P \ k) x) *iso pxp + ... | ⟪ Px , ¬xpqx ⟫ = ⟪ ? , gf28 ⟪ Px , (λ xqx → ¬xpqx ⟪ ? , xqx ⟫ ) ⟫ ⟫ where + gf28 : {x : Ordinal} → odef (P \ * xq) x → odef q x + gf28 {x} qx = subst (λ k → odef k x) (sym (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) qeq))) qx + pn : HOD + pn = * (find-p L C (gr Pp) (& p0)) + qn : HOD + qn = * (find-p L C (gr Pq) (& p0)) + gf20 : pn ≡ qn + gf20 = cong ( λ k → * (find-p L C k (& p0))) eq + gf19 : * xp ⊆ pn + gf19 = PDN.pn<gr Pp _ + gf18 : PDN L p0 C xp → PDN L p0 C xq → Replaced (PDHOD L p0 C) (λ z → & (P \ * z)) (& (p ∩ q)) + gf18 record { gr = gr₁ ; pn<gr = pn<gr₁ ; x∈PP = x∈PP₁ } record { gr = gr ; pn<gr = pn<gr ; x∈PP = x∈PP } = ? + -- record { z = xp ; az = Pp ; x=ψz = trans (cong (&) gf17) peq } where gf17 : p ∩ q ≡ p gf17 = ==→o≡ record { eq→ = proj1 ; eq← = λ {y} px → ⟪ px , ? ⟫ } + f4 : (y : Ordinal) → odef (* (find-p L C (gr Pp ) (& p0))) y → odef (p ∩ q) y + f4 y lt = ⟪ subst (λ k → odef k y) *iso ? , subst (λ k → odef k y) *iso (pn<gr ? ? lt) ⟫ ... | tri> ¬a ¬b c = record { z = & ( (* xp) ∪ (* xq) ) ; az = gf10 ; x=ψz = cong (&) (gf121 gp gq ) } where gp = record { z = xp ; az = Pp ; x=ψz = peq } gq = record { z = xq ; az = Pq ; x=ψz = qeq } @@ -270,7 +305,7 @@ lemma232 : (P L p : HOD ) (C : CountableModel ) → (LP : L ⊆ Power P ) → (Lp0 : L ∋ p ) ( NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → ( {q : HOD} → (Lq : L ∋ q ) → NonAtomic L q Lq ) - → ¬ ( (ctl-M C) ∋ rgen ( P-GenericFilter P L p LP Lp0 NEG C )) + → ¬ ( (ctl-M C) ∋ rgen ( P-GenericFilter P L p LP Lp0 ? NEG C )) lemma232 P L p C LP Lp0 NEG NA MG = {!!} where D : HOD -- P - G D = ?