Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1117:53ca3c609f0e
generated topology from subbase done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Jan 2023 20:07:04 +0900 |
parents | 6386019deef1 |
children | 441ad880a45d |
files | src/Topology.agda |
diffstat | 1 files changed, 8 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 01 20:03:29 2023 +0900 +++ b/src/Topology.agda Sun Jan 01 20:07:04 2023 +0900 @@ -71,7 +71,7 @@ record Base (L P : HOD) (u x : Ordinal) : Set n where field b : Ordinal - u⊂L : * u ⊂ L + u⊂L : * u ⊆ L sb : Subbase P b b⊆u : * b ⊆ * u bx : odef (* b) x @@ -93,9 +93,9 @@ ; o∪ = tp02 ; o∩ = tp01 } where tp00 : SO L P ⊆ Power L tp00 {u} ou x ux with ou ux - ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = proj2 u⊂L (b⊆u bx) + ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = u⊂L (b⊆u bx) tp01 : {p q : HOD} → SO L P ∋ p → SO L P ∋ q → SO L P ∋ (p ∩ q) - tp01 {p} {q} op oq {x} ux = record { b = b ; u⊂L = subst (λ k → k ⊂ L) (sym *iso) ul + tp01 {p} {q} op oq {x} ux = record { b = b ; u⊂L = subst (λ k → k ⊆ L) (sym *iso) ul ; sb = g∩ (Base.sb (op px)) (Base.sb (oq qx)) ; b⊆u = tp08 ; bx = tp14 } where px : odef (* (& p)) x px = subst (λ k → odef k x ) (sym *iso) ( proj1 (subst (λ k → odef k _ ) *iso ux ) ) @@ -115,23 +115,21 @@ tp10 = ⊆∩-incl-2 {* (Base.b (oq qx))} {* (Base.b (op px))} {q} (subst (λ k → (* (Base.b (oq qx))) ⊆ k ) *iso tp12) tp14 : odef (* (& (* (Base.b (op px)) ∩ * (Base.b (oq qx))))) x tp14 = subst (λ k → odef k x ) (sym *iso) ⟪ Base.bx (op px) , Base.bx (oq qx) ⟫ - ul : (p ∩ q) ⊂ L - ul = subst (λ k → k ⊂ L ) *iso ⟪ tp02 , (λ {z} pq → proj2 (Base.u⊂L (op px)) (pz pq) ) ⟫ where + ul : (p ∩ q) ⊆ L + ul = subst (λ k → k ⊆ L ) *iso (λ {z} pq → (Base.u⊂L (op px)) (pz pq) ) where pz : {z : Ordinal } → odef (* (& (p ∩ q))) z → odef (* (& p)) z pz {z} pq = subst (λ k → odef k z ) (sym *iso) ( proj1 (subst (λ k → odef k _ ) *iso pq ) ) - tp02 : & (* (& (p ∩ q))) o< & L - tp02 = subst ( λ k → k o< & L) (sym &iso) ? tp02 : { q : HOD} → q ⊂ SO L P → SO L P ∋ Union q tp02 {q} q⊂O {x} ux with subst (λ k → odef k x) *iso ux ... | record { owner = y ; ao = qy ; ox = yx } with proj2 q⊂O qy yx - ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = record { b = b ; u⊂L = subst (λ k → k ⊂ L) (sym *iso) tp04 + ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = record { b = b ; u⊂L = subst (λ k → k ⊆ L) (sym *iso) tp04 ; sb = sb ; b⊆u = subst ( λ k → * b ⊆ k ) (sym *iso) tp06 ; bx = bx } where tp05 : Union q ⊆ L tp05 {z} record { owner = y ; ao = qy ; ox = yx } with proj2 q⊂O qy yx ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = IsSubBase.P⊆PL isb (proj1 (is-sbp P sb bx )) _ (proj2 (is-sbp P sb bx )) - tp04 : Union q ⊂ L - tp04 = ⟪ ? , tp05 ⟫ + tp04 : Union q ⊆ L + tp04 = tp05 tp06 : * b ⊆ Union q tp06 {z} bz = record { owner = y ; ao = qy ; ox = b⊆u bz }