Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1207:56d501cf0318
UFLP→FIP done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Mar 2023 16:33:56 +0900 |
parents | 2c7fb857f144 |
children | 151f4c971a50 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 21 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Fri Mar 03 12:55:34 2023 +0800 +++ b/src/Tychonoff.agda Fri Mar 03 16:33:56 2023 +0900 @@ -139,10 +139,15 @@ f22 = subst₂ ( λ j k → j ⊆ k ) (sym *iso) (sym *iso) (λ {w} xpq → ⟪ subst (λ k → odef k w) *iso ( FBase.x⊆u Np (proj1 xpq)) , subst (λ k → odef k w) *iso ( FBase.x⊆u Nq (proj2 xpq)) ⟫ ) -- - -- it contains no empty sets + -- it contains no empty sets becase it is a finite intersection ( Subbase (* X) x ) -- - proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ¬ (N CSX fp ∋ od∅) - proper = ? + proper : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (fip : fip {X} CSX) → ¬ (N CSX fip ∋ od∅) + proper {X} CSX fip record { b = b ; x = x ; b⊆X = b⊆X ; sb = sb ; u⊆P = u⊆P ; x⊆u = x⊆u } = o≤> x≤0 (fip (fp00 _ _ b⊆X sb)) where + x≤0 : x o< osuc o∅ + x≤0 = subst₂ (λ j k → j o< osuc k) &iso (trans (cong (&) *iso) ord-od∅ ) (⊆→o≤ (x⊆u)) + fp00 : (b x : Ordinal) → * b ⊆ * X → Subbase (* b) x → Subbase (* X) x + fp00 b y b<X (gi by ) = gi ( b<X by ) + fp00 b _ b<X (g∩ {y} {z} sy sz ) = g∩ (fp00 _ _ b<X sy) (fp00 _ _ b<X sz) -- -- then we have maximum ultra filter -- @@ -172,6 +177,8 @@ ... | case1 lt = lt -- odef (* x) y ... | case2 nlxy = ⊥-elim (MaximumFilter.proper (maxf CSX fp) uf11 ) where y = UFLP.limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) + x⊆P : * x ⊆ P + x⊆P = cs⊆L TP (CSX (subst (λ k → odef (* X) k) (sym &iso) xx)) uf10 : odef (P \ * x ) y uf10 = nlxy uf03 : Neighbor TP y (& (P \ * x )) @@ -179,15 +186,22 @@ ; ux = subst (λ k → odef k y) (sym *iso) uf10 ; v⊆P = λ {z} xz → proj1 (subst(λ k → odef k z) *iso xz ) ; u⊆v = λ x → x } + uf07 : * (& (* x , * x)) ⊆ * X + uf07 {y} lt with subst (λ k → odef k y) *iso lt + ... | case1 refl = subst (λ k → odef (* X) k ) (sym &iso) xx + ... | case2 refl = subst (λ k → odef (* X) k ) (sym &iso) xx uf05 : odef (filter (MaximumFilter.mf (maxf CSX fp))) x - uf05 = MaximumFilter.F⊆mf (maxf CSX fp) record { b = & (* x , * x) - ; b⊆X = ? ; sb = gi ? ; u⊆P = ? ; x⊆u = λ x → x } + uf05 = MaximumFilter.F⊆mf (maxf CSX fp) record { b = & (* x , * x) ; b⊆X = uf07 + ; sb = gi (subst (λ k → odef k x) (sym *iso) (case1 (sym &iso)) ) ; u⊆P = x⊆P ; x⊆u = λ x → x } uf06 : odef (filter (MaximumFilter.mf (maxf CSX fp))) (& (P \ * x )) uf06 = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf 0<X CSX fp)) uf03 (subst (λ k → odef k y) (sym *iso) uf10) uf13 : & ((* x) ∩ (P \ * x )) ≡ o∅ - uf13 = ? + uf13 = subst₂ (λ j k → j ≡ k ) refl ord-od∅ (cong (&) ( ==→o≡ record { eq→ = uf14 ; eq← = λ {x} lt → ⊥-elim (¬x<0 lt) } ) ) where + uf14 : {y : Ordinal} → odef (* x ∩ (P \ * x)) y → odef od∅ y + uf14 {y} ⟪ xy , ⟪ Px , ¬xy ⟫ ⟫ = ⊥-elim ( ¬xy xy ) uf12 : odef (Power P) (& ((* x) ∩ (P \ * x ))) - uf12 z pz = ? + uf12 z pz with subst (λ k → odef k z) *iso pz + ... | ⟪ xz , ⟪ Pz , ¬xz ⟫ ⟫ = Pz uf11 : filter (MaximumFilter.mf (maxf CSX fp)) ∋ od∅ uf11 = subst (λ k → odef (filter (MaximumFilter.mf (maxf CSX fp))) k ) uf13 ( filter2 (MaximumFilter.mf (maxf CSX fp)) uf05 uf06 uf12 )