Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 401:59152f16125a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 09:45:58 +0900 |
parents | 48ea49494fd1 |
children | d87492ae4040 |
files | OD.agda |
diffstat | 1 files changed, 19 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 08:35:58 2020 +0900 +++ b/OD.agda Tue Jul 28 09:45:58 2020 +0900 @@ -460,22 +460,30 @@ -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i -nat→ω-iso {i} lt = lemma lt i (sym oiso) od∅ iφ (sym o∅≡od∅) init where - init : nat→ω ( ω→nato iφ ) ≡ od∅ - init = refl - lemma : {x y : Ordinal } → (ltd : infinite-d x ) → (xi : HOD) → xi ≡ ord→od x - → (pi : HOD) → (prev : infinite-d y ) → pi ≡ ord→od y → nat→ω (ω→nato prev) ≡ pi - → nat→ω (ω→nato ltd) ≡ xi - lemma {x} {y} ltd xi xi=x p pi prev pi=p = {!!} - -nat→ω-iso' : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i -nat→ω-iso' {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where +nat→ω-iso {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → (lt : infinite ∋ x) → nat→ω (ω→nat x lt) ≡ x ind {x} prev lt = ind1 lt oiso where ind1 : {ox : Ordinal } → (ltd : infinite-d ox ) → ord→od ox ≡ x → nat→ω (ω→nato ltd) ≡ x ind1 {o∅} iφ refl = sym o∅≡od∅ - ind1 (isuc ltd) ox=x = trans (cong (λ k → odsuc k ) (prev {!!} {!!}) ) ? + ind1 {_} (isuc {x₁} ltd) ox=x = begin + nat→ω (ω→nato (isuc ltd) ) + ≡⟨⟩ + Union (nat→ω (ω→nato ltd) , (nat→ω (ω→nato ltd) , nat→ω (ω→nato ltd))) + ≡⟨ cong (λ k → Union (k , (k , k ))) lemma ⟩ + Union (ord→od x₁ , (ord→od x₁ , ord→od x₁)) + ≡⟨ trans ( sym oiso) ox=x ⟩ + x + ∎ where + open ≡-Reasoning + lemma0 : x ∋ ord→od x₁ + lemma0 = {!!} + lemma1 : infinite ∋ ord→od x₁ + lemma1 = {!!} + lemma : nat→ω (ω→nato ltd) ≡ ord→od x₁ + lemma with prev {ord→od x₁} lemma0 lemma1 + ... | t = {!!} + infixr 200 _∈_