Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1119:5b0525cb9a5d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Jan 2023 10:15:20 +0900 |
parents | 441ad880a45d |
children | e086a266c6b7 |
files | src/Topology.agda |
diffstat | 1 files changed, 47 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 01 20:28:07 2023 +0900 +++ b/src/Topology.agda Mon Jan 02 10:15:20 2023 +0900 @@ -41,23 +41,24 @@ o∪ : { P : HOD } → P ⊂ OS → OS ∋ Union P -- closed Set CS : HOD - CS = record { od = record { def = λ x → odef OS (& ( L \ (* x ))) } ; odmax = & L ; <odmax = tp02 } where - tp02 : {y : Ordinal } → odef OS (& (L \ * y)) → y o< & L - tp02 {y} nop = ? + CS = record { od = record { def = λ x → (* x ⊆ L) ∧ odef OS (& ( L \ (* x ))) } ; odmax = osuc (& L) ; <odmax = tp02 } where + tp02 : {y : Ordinal } → (* y ⊆ L) ∧ odef OS (& (L \ * y)) → y o< osuc (& L) + tp02 {y} nop = subst (λ k → k o≤ & L ) &iso ( ⊆→o≤ (λ {x} yx → proj1 nop yx )) os⊆L : {x : HOD} → OS ∋ x → x ⊆ L os⊆L {x} Ox {y} xy = ( OS⊆PL Ox ) _ (subst (λ k → odef k y) (sym *iso) xy ) - -- ∈∅< ( proj1 nop ) open Topology --- Base --- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that --- W ⊆ U ∩ V and x ∈ W . +-- Subbase P +-- A set of countable intersection of P will be a base (x ix an element of the base) data Subbase (P : HOD) : Ordinal → Set n where gi : {x : Ordinal } → odef P x → Subbase P x g∩ : {x y : Ordinal } → Subbase P x → Subbase P y → Subbase P (& (* x ∩ * y)) +-- +-- if y is in a Subbase, some element of P contains it + sbp : (P : HOD) {x : Ordinal } → Subbase P x → Ordinal sbp P {x} (gi {y} px) = x sbp P {.(& (* _ ∩ * _))} (g∩ sb sb₁) = sbp P sb @@ -66,6 +67,8 @@ is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫ is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso xy)) +-- An open set generate from a base +-- -- OS = { U ⊂ L | ∀ x ∈ U → ∃ b ∈ P → x ∈ b ⊂ U } record Base (L P : HOD) (u x : Ordinal) : Set n where @@ -75,14 +78,17 @@ sb : Subbase P b b⊆u : * b ⊆ * u bx : odef (* b) x + x⊆L : odef L x + x⊆L = u⊂L (b⊆u bx) SO : (L P : HOD) → HOD -SO L P = record { od = record { def = λ u → {x : Ordinal } → odef (* u) x → Base L P u x } ; odmax = ? ; <odmax = ? } +SO L P = record { od = record { def = λ u → {x : Ordinal } → odef (* u) x → Base L P u x } ; odmax = osuc (& L) ; <odmax = tp00 } where + tp00 : {y : Ordinal} → ({x : Ordinal} → odef (* y) x → Base L P y x) → y o< osuc (& L) + tp00 {y} op = subst (λ k → k o≤ & L ) &iso ( ⊆→o≤ (λ {x} yx → Base.x⊆L (op yx) )) record IsSubBase (L P : HOD) : Set (suc n) where field P⊆PL : P ⊆ Power L - -- we may need these if OS ∋ L is necessary -- p : {x : HOD} → L ∋ x → HOD -- Pp : {x : HOD} → {lx : L ∋ x } → P ∋ p lx @@ -143,31 +149,30 @@ -- Finite Intersection Property -data Finite-∩ (S : HOD) : HOD → Set (suc n) where - fin-e : {x : HOD} → S ∋ x → Finite-∩ S x - fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) - record FIP {L : HOD} (top : Topology L) : Set (suc n) where field - fipS⊆PL : L ⊆ CS top - fip≠φ : { x : HOD } → Finite-∩ L x → ¬ ( x ≡ od∅ ) + fip≠φ : { C : HOD } { x : Ordinal } → C ⊆ CS top → Subbase C x → o∅ o< x -- Compact -data Finite-∪ (S : HOD) : HOD → Set (suc n) where - fin-e : {x : HOD} → S ∋ x → Finite-∪ S x - fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) +data Finite-∪ (S : HOD) : Ordinal → Set n where + fin-e : {x : Ordinal } → odef S x → Finite-∪ S x + fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) record Compact {L : HOD} (top : Topology L) : Set (suc n) where field finCover : {X : HOD} → X ⊆ OS top → X covers L → HOD isCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers L ) → (finCover xo xcp ) covers L - isFinite : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers L ) → Finite-∪ X (finCover xo xcp ) + isFinite : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers L ) → Finite-∪ X (& (finCover xo xcp ) ) -- FIP is Compact FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top -FIP→Compact {L} TL fip = record { finCover = ? ; isCover = ? ; isFinite = ? } +FIP→Compact {L} top fip = record { finCover = finCover ; isCover = ? ; isFinite = ? } where + finCover : {C : HOD} → C ⊆ OS top → C covers L → HOD + finCover {C} C<T CL = record { od = record { def = λ x → odef L x ∧ ( ¬ Subbase C x) } ; odmax = & L ; <odmax = odef∧< } + isConver : {C : HOD} (xo : C ⊆ OS top) (xcp : C covers L) → (finCover xo xcp) covers L + isConver {C} xo xcp = record { cover = λ lx → ? ; P∋cover = ? ; isCover = ? } Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top Compact→FIP = {!!} @@ -176,6 +181,9 @@ open ZFProduct +-- Product Topology is not +-- ZFP (OS TP) (OS TQ) (box) + record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where field p q : Ordinal @@ -188,27 +196,27 @@ oq : odef (OS TQ) q prod : x ≡ & (ZFP P (* q )) --- box : HOD --- box = ZFP (OS TP) (OS TQ) +pbase⊆PL : {P Q : HOD} → (TP : Topology P) → (TQ : Topology Q) → {x : Ordinal } → BaseP TP Q x ∨ BaseQ P TQ x → odef (Power (ZFP P Q)) x +pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where + tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) + tp01 w wz with subst (λ k → odef k w ) *iso wz + ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where + tp03 : odef P a + tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa +pbase⊆PL {P} {Q} TP TQ {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where + tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) + tp01 w wz with subst (λ k → odef k w ) *iso wz + ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where + tp03 : odef Q b + tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb -base : {P Q : HOD} → Topology P → Topology Q → HOD -base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } +pbase : {P Q : HOD} → Topology P → Topology Q → HOD +pbase {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (Power (ZFP P Q)) ; <odmax = tp00 } where + tp00 : {y : Ordinal} → BaseP TP Q y ∨ BaseQ P TQ y → y o< & (Power (ZFP P Q)) + tp00 {y} bpq = odef< ( pbase⊆PL TP TQ bpq ) _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) -_Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (base TP TQ) record { P⊆PL = tp00 } where - tp00 : base TP TQ ⊆ Power (ZFP P Q) - tp00 {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where - tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) - tp01 w wz with subst (λ k → odef k w ) *iso wz - ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where - tp03 : odef P a - tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa - tp00 {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where - tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) - tp01 w wz with subst (λ k → odef k w ) *iso wz - ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where - tp03 : odef Q b - tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb +_Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } -- existence of Ultra Filter @@ -230,7 +238,7 @@ UFLP→FIP : {P : HOD} (TP : Topology P) → ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf ) → FIP TP -UFLP→FIP {P} TP uflp = record { fipS⊆PL = ? ; fip≠φ = ? } +UFLP→FIP {P} TP uflp = record { fip≠φ = ? } -- Product of UFL has limit point (Tychonoff)