changeset 1225:5c4a088ae95b

Proj2 of F
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 07 Mar 2023 18:24:42 +0900
parents e1a1161df14c
children c8f5376a9623
files src/Tychonoff.agda
diffstat 1 files changed, 135 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/src/Tychonoff.agda	Tue Mar 07 15:43:30 2023 +0900
+++ b/src/Tychonoff.agda	Tue Mar 07 18:24:42 2023 +0900
@@ -325,11 +325,6 @@
      uflQ : (F : Filter {Power Q} {Q} (λ x → x))  (UF : ultra-filter F)
              → UFLP TQ F UF
      uflQ F UF = FIP→UFLP TQ (Compact→FIP TQ CQ) F UF
-     FPQ→FQP :  (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) → Filter {Power (ZFP Q P)} {ZFP Q P } (λ x → x) 
-     FPQ→FQP F = record { filter =  ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? }
-     projFP :  (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))  (UF : ultra-filter F)
-             → Filter {Power P} {P} (λ x → x)
-     projFP = ?
      -- Product of UFL has a limit point
      uflPQ :  (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))  (UF : ultra-filter F)
              → UFLP (ProductTopology TP TQ) F UF
@@ -495,10 +490,143 @@
          uflp : UFLP TP FP UFP
          uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP
 
+         isQ→PxQ : {x : HOD} → (x⊆Q : x ⊆ Q ) → ZFP P x  ⊆ ZFP P Q 
+         isQ→PxQ {x} x⊆Q (ab-pair p q) = ab-pair p (x⊆Q q) 
+         fx→qx : {x : HOD } → filter F ∋ x → HOD 
+         fx→qx {x} fx = Replace' x ( λ y xy → * (zπ2 (F⊆pxq fx xy) ))
+         fx→qx1 : {q : HOD } {p : Ordinal } → odef P p → (fq : filter F ∋  ZFP P q ) → fx→qx fq ≡ q
+         fx→qx1 {q} {p} qq fq = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where
+             ty21 : {a b : Ordinal } → (qz : odef q b) → (pz : odef P a) → ZFProduct P Q (& (* (& < * a , * b >)))
+             ty21 qz pz = F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair pz qz ))  
+             ty32 : {a b : Ordinal } → (qz : odef q b) → (pz : odef P a) → zπ2 (ty21 qz pz) ≡ b
+             ty32 {a} {b} pz qz  = ty33 (ty21 pz qz) (cong (&) *iso) where
+                 ty33 : {a b x : Ordinal } ( q : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 q ≡ b
+                 ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq))
+                 ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d)
+             ty20 : {x : Ordinal} → odef (fx→qx fq) x → odef q x
+             ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef q k) b=x qz  where
+                 ty24 : * x  ≡ * b 
+                 ty24 = begin
+                    * x ≡⟨ cong (*) x=ψz ⟩
+                    _ ≡⟨ *iso  ⟩
+                    * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ cong (*) (ty32 qz pz) ⟩
+                    * b ∎ where open ≡-Reasoning
+                 b=x : b  ≡ x 
+                 b=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24))
+             ty22 : {x : Ordinal} → odef q x → odef (fx→qx fq) x 
+             ty22 {x} qx = record { z = _ ; az = ab-pair ? ? ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) }  where
+                 ty12 : * x ≡ * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair qq qx ))))
+                 ty12 = begin
+                    * x ≡⟨ sym (cong (*) (ty32 qx qq )) ⟩
+                    * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair qq qx )))) ∎ where open ≡-Reasoning
+         FQSet : HOD
+         FQSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ2 (F⊆pxq fx xy) )))
+         FQSet∋zpq : {q : HOD} → q ⊆ Q → filter F ∋  ZFP P q → FQSet ∋ q
+         FQSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = sym (cong (&) ty10) } where
+              -- brain damaged one
+              ty11 : {y : HOD} {xy : (* (& (ZFP P q ))) ∋ y } → 
+                 * (zπ2 ( (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ * (zπ2 ( (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy)  )))
+              ty11 {y} {xy}  = cong (λ k → * (zπ2 k)) ( HE.≅-to-≡ (∋-irr {ZFP P Q} a b )) where
+                 a = F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy
+                 b = F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy)  
+              ty10 : Replace' (* (& (ZFP P q ))) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ q
+              ty10 = begin
+                  Replace' (* (& (ZFP P q))) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) 
+                     ≡⟨ 
+                  cong (λ k → Replace' (* (& (ZFP P q ))) k ) (f-extensionality (λ y → (f-extensionality (λ xy → ty11 {y} {xy}))))
+                      ⟩
+                  Replace' (* (& (ZFP P q))) (λ y xy → * (zπ2 (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy)  ))) 
+                     ≡⟨ Replace'-iso _  ( λ y xy → * (zπ2 (F⊆pxq fq xy) )) ⟩
+                  Replace' (ZFP P q ) ( λ y xy → * (zπ2 (F⊆pxq fq xy) )) ≡⟨ refl ⟩ 
+                  fx→qx fq ≡⟨ fx→qx1 ? fq  ⟩
+                  q ∎ where open ≡-Reasoning
+         FQSet⊆PP :  FQSet  ⊆ Power Q
+         FQSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw
+         ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } 
+            = subst (λ k → odef Q k) (sym (trans x=ψz1 &iso)) 
+               (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fz) (subst (λ k → odef (* z) k) (sym &iso) az1))  )
+         X=F2 : (x : Ordinal) (q : HOD) (fx : odef (filter F) x) → Set n
+         X=F2 x q fx = & q ≡ & (Replace' (* x) (λ y xy →
+           * (zπ2 (f⊆L F
+             (subst (odef (filter F)) (sym &iso) fx)
+             (& y) (subst (λ k → OD.def (HOD.od k) (& y)) (sym *iso) xy)))))
+         x⊆qxq : {x : Ordinal} {q : HOD} (fx : odef (filter F) x) → X=F2 x q fx → * x ⊆ ZFP P q
+         x⊆qxq {x} {p} fx x=ψz {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw
+         ... | ab-pair {a} {b} pw qw = ab-pair pw ty08 where
+              ty21 : ZFProduct P Q (& (* (& < * a , * b >)))
+              ty21 = subst (λ k → ZFProduct P Q k) (cong & (sym *iso)) (ab-pair pw qw)  
+              ty32 : ZFProduct P Q (& (* (& < * a , * b >)))
+              ty32 = f⊆L F (subst (odef (filter F)) (sym &iso) fx)
+                    (& (* (& < * a , * b >))) (subst (λ k → odef k 
+                    (& (* (& < * a , * b >)))) (sym *iso) (subst (odef (* x)) (sym &iso) xw))
+              ty07 : odef (* x) (& < * a , * b >) 
+              ty07 = xw
+              ty08 : odef p b
+              ty08 = subst (λ k → odef k b ) (subst₂ (λ j k → j ≡ k) *iso *iso (sym (cong (*) x=ψz)))  
+                   record { z = _ ; az = xw ;  x=ψz = sym (trans &iso (ty33 ty32 (cong (&) *iso ))) } where
+                 ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b
+                 ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq))
+                 ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d)
+         q⊆Q : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F2 x p fx → p ⊆ P
+         q⊆Q {x} {p} fx x=ψz {w} pw with subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψz))  pw
+         ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) 
+               ? -- (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 ))  )
          FQ : Filter {Power Q} {Q} (λ x → x)
-         FQ = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = {!!} } 
+         FQ = record { filter = FQSet ; f⊆L = FQSet⊆PP ; filter1 = ty01 ; filter2 = ty02 } where
+             ty01 : {p q : HOD} → Power Q ∋ q → FQSet ∋ p → p ⊆ q → FQSet ∋ q
+             ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FQSet∋zpq ? ? -- q⊆P (ty10 ty05 ty06 ) 
+                where
+                  --  p ≡ (Replace' (* x) (λ y xy → (zπ1 (F⊆qxq (subst (odef (filter F)) (sym &iso) fx) xy))
+                  --  x = ( qx , qx )  , qx ⊆ q
+                  ty03 : Power (ZFP P Q) ∋ ZFP P q 
+                  ty03 z zpq = isQ→PxQ {* (& q)} ? ? --  ( subst (λ k → odef k z ) (trans *iso (cong (λ k → ZFP P k ) (sym *iso))) zpq ) (Pq _)
+                  q⊆P : q ⊆ Q
+                  q⊆P {w} qw = Pq _ (subst (λ k → odef k w ) (sym *iso) qw )
+                  ty05 : filter F ∋  ZFP P p
+                  ty05 = filter1 F (λ z wz → isQ→PxQ ? ? ) (subst (λ k → odef (filter F) k) (sym &iso) fx) (x⊆qxq fx x=ψz)
+                  ty06 : ZFP P p ⊆ ZFP P q 
+                  ty06 (ab-pair wp wq ) = ab-pair wp (p⊆q wq) 
+                  ty10 : filter F ∋ ZFP P p → ZFP P p ⊆ ZFP P q → filter F ∋  ZFP P q 
+                  ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq
+             ty02 : {p q : HOD} → FQSet ∋ p → FQSet ∋ q → Power Q ∋ (p ∩ q) → FQSet ∋ (p ∩ q)
+             ty02 {p} {q} record { z = zp ; az = fzp ; x=ψz = x=ψzp }
+                          record { z = zq ; az = fzq ; x=ψz = x=ψzq } Ppq 
+                = FQSet∋zpq ? ? where -- (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where
+                  ty54 : Power (ZFP P Q) ∋ (ZFP P q ∩ ZFP P q )
+                  ty54 z xz = subst (λ k → ZFProduct P Q k ) (zp-iso pqz) (ab-pair pqz1 pqz2 ) where
+                     pqz :  odef (ZFP P (p ∩ q) )  z
+                     pqz = ? -- subst (λ k → odef k z ) (trans *iso (sym (proj2 ZFP∩) ))  xz
+                     pqz1 : odef P (zπ1 pqz)
+                     pqz1 = zp1 pqz
+                     pqz2 : odef Q (zπ2 pqz)
+                     pqz2 = ? -- q⊆Q fzp x=ψzp (proj2 (zp2 pqz))
+                  ty53 : filter F ∋ ZFP P q 
+                  ty53 = ? -- filter1 F (λ z wz → isQ→PxQ ? -- (q⊆Q fzp x=ψzp) 
+                     -- (subst (λ k → odef k z) *iso wz)) 
+                     -- (subst (λ k → odef (filter F) k) (sym &iso) fzp ) (x⊆qxq fzp x=ψzp)
+                  ty52 : filter F ∋ ZFP P q  
+                  ty52 = ? -- filter1 F (λ z wz → isQ→PxQ (q⊆Q fzq x=ψzq) 
+                     -- (subst (λ k → odef k z) *iso wz)) 
+                     -- (subst (λ k → odef (filter F) k) (sym &iso) fzq ) (x⊆qxq fzq x=ψzq)
+                  ty51 : filter F ∋ ( ZFP P q ∩ ZFP q Q )
+                  ty51 = ? -- filter2 F ty53 ty52 ty54
+                  ty50 : filter F ∋ ZFP P (p ∩ q) 
+                  ty50 = ? -- subst (λ k → filter F ∋ k ) (sym (proj1 ZFP∩)) ty51
          UFQ : ultra-filter FQ
-         UFQ = record { proper = {!!} ; ultra = {!!} }
+         UFQ = record { proper = ty61 ; ultra = ty60 } where
+            ty61 : ¬ (FQSet ∋ od∅)
+            ty61 record { z = z ; az = az ; x=ψz = x=ψz } = ultra-filter.proper UF ty62 where 
+               ty63 : {x : Ordinal} → ¬ odef (* z) x
+               ty63 {x} zx with x⊆qxq az x=ψz zx
+               ... | ab-pair xp xq = ¬x<0 xq
+               ty62 : odef (filter F) (& od∅)
+               ty62 = subst (λ k → odef (filter F) k ) (trans (sym &iso) (cong (&) (¬x∋y→x≡od∅ ty63)) ) az
+            ty60 : {p : HOD} → Power Q ∋ p → Power Q ∋ (Q \ p) → (FQSet ∋ p) ∨ (FQSet ∋ (Q \ p))
+            ty60 {q} Pp Pnp with ultra-filter.ultra UF {ZFP P q} 
+                (λ z xz → isQ→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) ?
+            ... | case1 fq  = case1 (FQSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fq )
+            ... | case2 fnp = case2 (FQSet∋zpq (λ pp → proj1 pp)  (subst (λ k → odef (filter F) k) (cong (&) (proj2 ZFP\Q)) fnp ))
+
          uflq : UFLP TQ FQ UFQ
          uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ