Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1164:5e065f0a7ba2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 21 Jan 2023 09:12:10 +0900 |
parents | cd54ee498249 |
children | 70bcb775115a |
files | src/OPair.agda src/Topology.agda |
diffstat | 2 files changed, 14 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OPair.agda Sat Jan 21 09:02:52 2023 +0900 +++ b/src/OPair.agda Sat Jan 21 09:12:10 2023 +0900 @@ -254,7 +254,9 @@ ZFPproj2 : {A B X : HOD} → X ⊆ ZFP A B → HOD ZFPproj2 {A} {B} {X} X⊆P = Replace' X ( λ x px → * (zπ2 (X⊆P px) )) -record PProj1 (L : HOD) (x : Ordinal) : Set n where +-- simple version + +record ZProj1 (L : HOD) (x : Ordinal) : Set n where field pq : Ordinal opq : ord-pair pq @@ -263,16 +265,16 @@ -- LP' = Replace' L ( λ p lp → ZFPproj1 {P} {Q} {p} (λ {x} px → (LPQ lp _ (subst (λ k → odef k x) (sym *iso) px ) ))) -Proj1PP : (L P Q : HOD) → HOD -Proj1PP L P Q = record { od = record { def = λ x → odef P x ∧ ((y : Ordinal) → PProj1 L y) } ; odmax = & P ; <odmax = odef∧< } +Proj1 : (L P Q : HOD) → HOD +Proj1 L P Q = record { od = record { def = λ x → odef P x ∧ ((y : Ordinal) → ZProj1 L y) } ; odmax = & P ; <odmax = odef∧< } -record PProj2 (L : HOD) (x : Ordinal) : Set n where +record ZProj2 (L : HOD) (x : Ordinal) : Set n where field pq : Ordinal opq : ord-pair pq Lpq : odef L pq x=pi2 : x ≡ pi2 opq -Proj2PP : (L P Q : HOD) → HOD -Proj2PP L P Q = record { od = record { def = λ x → odef Q x ∧ ((y : Ordinal) → PProj2 L y) } ; odmax = & Q ; <odmax = odef∧< } +Proj2 : (L P Q : HOD) → HOD +Proj2 L P Q = record { od = record { def = λ x → odef Q x ∧ ((y : Ordinal) → ZProj2 L y) } ; odmax = & Q ; <odmax = odef∧< }
--- a/src/Topology.agda Sat Jan 21 09:02:52 2023 +0900 +++ b/src/Topology.agda Sat Jan 21 09:12:10 2023 +0900 @@ -553,7 +553,7 @@ FilterProj : {P Q LPQ : HOD } → ( LPPQ : LPQ ⊆ Power (ZFP P Q)) → Filter {LPQ} LPPQ - → (Filter {Proj1PP LPQ (Power P) (Power Q)} ?) ∧ (Filter {Proj2PP LPQ (Power P) (Power Q)} ?) + → (Filter {Proj1 LPQ (Power P) (Power Q)} ?) ∧ (Filter {Proj2 LPQ (Power P) (Power Q)} ?) FilterProj = ? ProuctLimit→ProjLimit : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) @@ -583,14 +583,14 @@ → UFLP (ProductTopology TP TQ) LPQ F UF uflPQ {L} LPQ F UF = record { limit = & < * ( UFLP.limit uflp ) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where LP : HOD -- proj1 of LPQ - LP = Proj1PP L (Power P) (Power Q) + LP = Proj1 L (Power P) (Power Q) LPP : LP ⊆ Power P LPP {x} ⟪ Px , p1 ⟫ = Px FP : Filter {LP} {P} LPP - FP = record { filter = Proj1PP (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where - ty00 : Proj1PP (filter F) (Power P) (Power Q) ⊆ LP - ty00 {x} ⟪ PPx , ppf ⟫ = ⟪ PPx , ( λ y → record { pq = PProj1.pq (ppf y) - ; opq = PProj1.opq (ppf y) ; Lpq = f⊆L F (PProj1.Lpq (ppf y)) ; x=pi1 = PProj1.x=pi1 (ppf y) } ) ⟫ + FP = record { filter = Proj1 (filter F) (Power P) (Power Q) ; f⊆L = ty00 ; filter1 = ? ; filter2 = ? } where + ty00 : Proj1 (filter F) (Power P) (Power Q) ⊆ LP + ty00 {x} ⟪ PPx , ppf ⟫ = ⟪ PPx , ( λ y → record { pq = ZProj1.pq (ppf y) + ; opq = ZProj1.opq (ppf y) ; Lpq = f⊆L F (ZProj1.Lpq (ppf y)) ; x=pi1 = ZProj1.x=pi1 (ppf y) } ) ⟫ UFP : ultra-filter FP UFP = record { proper = ? ; ultra = ? } uflp : UFLP TP LPP FP UFP