changeset 1153:5eb972738f9b

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 18 Jan 2023 14:09:53 +0900 (2023-01-18)
parents e1c6719a8c38
children 0612874b815c
files src/Topology.agda src/filter.agda src/maximum-filter.agda
diffstat 3 files changed, 181 insertions(+), 133 deletions(-) [+]
line wrap: on
line diff
--- a/src/Topology.agda	Wed Jan 18 09:30:26 2023 +0900
+++ b/src/Topology.agda	Wed Jan 18 14:09:53 2023 +0900
@@ -395,8 +395,6 @@
             fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w
             fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw
 
-
-
 -- some day
 Compact→FIP : Set (suc n)
 Compact→FIP = {L : HOD} → (top : Topology L ) → Compact top  → FIP top
@@ -416,20 +414,28 @@
 
 -- FIP is UFL
 
+record NFIP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (X : Ordinal) : Set n where
+   field
+       osx : * X ⊆ OS TP
+       fip : {u x : Ordinal} → * u ⊆ (L \ * X) → Subbase (* u) x → o∅ o< x
+
 UFLP→FIP : {P : HOD} (TP : Topology P) → {L : HOD} (LP : L ⊆ Power P ) →
    ( (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP
 UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where
      fip : {X : Ordinal} → * X ⊆ CS TP → Set n
-     fip {X} CSX = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x
-     N : {X : Ordinal} → (CSX : * X ⊆ CS TP ) → fip {X} CSX → HOD
-     N {X} CSX fip = record { od = record { def = λ x → Base L P X x ∧ ( o∅ o< x ) } ; odmax = ? ; <odmax = ? }
-     F : {X : Ordinal} → (CSX : * X ⊆ CS TP ) → fip {X} CSX → Filter {L} {P} LP
-     F {X} CSX fip = record { filter = N CSX fip ; f⊆L = ? ; filter1 = ? ; filter2 = ? }
+     fip {X} CSX = {u x : Ordinal} → * u ⊆ * X → Subbase (* u) x → o∅ o< x
+     N : HOD
+     N = record { od = record { def = λ X → NFIP TP LP X } ; odmax = ? ; <odmax = ? }
+     F : Filter {L} {P} LP
+     F = record { filter = N ; f⊆L = ? ; filter1 = f1 ; filter2 = ? } where
+         f1 : {p q : HOD} → L ∋ q → N ∋ p → p ⊆ q → N ∋ q
+         f1 {p} {q} Lq record { osx = osx ; fip = fip } p⊆q = record { osx = ? ; fip = ? } 
      uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal
-     uf00 {X} CSX fip = UFLP.limit ( uflp
-         ( MaximumFilter.mf (F→Maximum {L} {P} LP ? ? (F CSX ?) ? ? ? ))
-         ?
-         (F→ultra LP ? ? (F CSX fip)  ? ? ? ) )
+     uf00 {X} CSX fip = ?
+     -- UFLP.limit ( uflp
+     --    ( MaximumFilter.mf (F→Maximum {L} {P} LP ? ? (F CSX ?) ? ? ? ))
+     --    ?
+     --    (F→ultra LP ? ? (F CSX fip)  ? ? ? ) )
 
 -- some day
 FIP→UFLP : Set (suc (suc n))
--- a/src/filter.agda	Wed Jan 18 09:30:26 2023 +0900
+++ b/src/filter.agda	Wed Jan 18 14:09:53 2023 +0900
@@ -304,21 +304,6 @@
 --  if there is a filter , there is a ultra filter under the axiom of choise
 --        Zorn Lemma
 
-import zorn 
-
-open import Relation.Binary
-
-PO : IsStrictPartialOrder _≡_ _⊂_ 
-PO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
-   ; trans = λ {a} {b} {c} → trans-⊂ {a} {b} {c}
-   ; irrefl = λ x=y x<y → o<¬≡ (cong (&) x=y) (proj1 x<y)
-   ; <-resp-≈ =  record { fst = ( λ {x} {y} {y1} y=y1 xy1 → subst (λ k → x ⊂ k) y=y1 xy1  )
-                        ; snd = (λ {x} {x1} {y} x=x1 x1y → subst (λ k → k ⊂ x) x=x1 x1y ) } }
-
-open zorn O _⊂_ PO
-
-open import  Relation.Binary.Structures
-
 record IsFilter { L P : HOD  } (LP : L ⊆ Power P) (filter : Ordinal ) : Set n where
    field
        f⊆L     : (* filter) ⊆ L
@@ -343,110 +328,3 @@
       fx00 : {x : Ordinal } → IsFilter LP x ∧ filter F ⊆ * x → x o< osuc (& L)
       fx00 {x} lt = subst (λ k → k o< osuc (& L)) &iso ( ⊆→o≤ (IsFilter.f⊆L (proj1 lt ))  )
 
-F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q))
-      → (F : Filter {L} {P} LP) → o∅ o< & L →  {y : Ordinal } → odef (filter F) y →  (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F
-F→Maximum {L} {P} LP NEG CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = subst (λ k → filter F ⊆ k ) (sym *iso) mf52  
-         ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( IsFilter.proper imf)  ; is-maximum = mf50 }  where
-      FX : HOD
-      FX = F⊆X {L} {P} LP F
-      oF = & (filter F)
-      mf11 : { p q : Ordinal } → odef L q → odef (* oF) p →  (* p) ⊆ (* q)  → odef (* oF) q
-      mf11 {p} {q} Lq Fp p⊆q = subst₂ (λ j k → odef j k ) (sym *iso) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) 
-             (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fp) p⊆q )
-      mf12 : { p q : Ordinal } → odef (* oF)  p →  odef (* oF) q  → odef L (& ((* p) ∩ (* q))) → odef (* oF) (& ((* p) ∩ (* q)))
-      mf12 {p} {q} Fp Fq Lpq = subst (λ k → odef k (& ((* p) ∩ (* q))) ) (sym *iso) 
-        ( filter2 F (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fp) (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fq) Lpq)
-      FX∋F : odef FX (& (filter F))
-      FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = mf11 ; filter2 = mf12 
-        ; proper = subst₂ (λ j k →  ¬ (odef j k) ) (sym *iso) ord-od∅ Fprop  }  
-          , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ 
-      -- 
-      -- if filter B (which contains F) is transitive, Union B is also a filter which contains F
-      --   and this is a SUP
-      -- 
-      SUP⊆ : (B : HOD) → B ⊆ FX → IsTotalOrderSet B → SUP FX B
-      SUP⊆ B B⊆FX OB with trio< (& B) o∅ 
-      ... | tri< a ¬b ¬c = ⊥-elim (¬x<0 a )
-      ... | tri≈ ¬a b ¬c = record { sup = filter F ; isSUP = record { ax = FX∋F ; x≤sup = λ {y} zy → ⊥-elim (o<¬≡ (sym b) (∈∅< zy))  } } 
-      ... | tri> ¬a ¬b 0<B = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = mf40 } } where
-          mf20 : HOD
-          mf20 = ODC.minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B )))
-          mf18 : odef B (& mf20 )
-          mf18 = ODC.x∋minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B )))
-          mf16 : Union B ⊆ L
-          mf16 record { owner = b ; ao = Bb ; ox = bx } = IsFilter.f⊆L ( proj1 ( B⊆FX Bb )) bx
-          mf17 : {p q : Ordinal} → odef L q → odef (* (& (Union B))) p → * p ⊆ * q → odef (* (& (Union B))) q
-          mf17 {p} {q} Lq bp p⊆q with subst (λ k → odef k p ) *iso bp
-          ... | record { owner = owner ; ao = ao ; ox = ox } = subst (λ k → odef k q) (sym *iso) 
-                record { owner = owner ; ao = ao ; ox = IsFilter.filter1 mf30 Lq ox p⊆q } where
-              mf30 : IsFilter {L} {P} LP owner
-              mf30 = proj1 ( B⊆FX ao ) 
-          mf31 : {p q : Ordinal} → odef (* (& (Union B))) p → odef (* (& (Union B))) q → odef L (& ((* p) ∩ (* q))) → odef (* (& (Union B))) (& ((* p) ∩ (* q)))
-          mf31 {p} {q} bp bq Lpq with subst (λ k → odef k p ) *iso bp | subst (λ k → odef k q ) *iso bq
-          ... | record { owner = bp ; ao = Bbp ; ox = bbp } | record { owner = bq ; ao = Bbq ; ox = bbq } 
-             with OB (subst (λ k → odef B k) (sym &iso) Bbp) (subst (λ k → odef B k) (sym &iso) Bbq)
-          ... | tri< bp⊂bq ¬b ¬c = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bq ; ao = Bbq ; ox = mf36 } where
-              mf36 : odef (* bq) (& ((* p) ∩ (* q)))
-              mf36 = IsFilter.filter2 mf30 (proj2 bp⊂bq bbp) bbq Lpq where
-                  mf30 : IsFilter {L} {P} LP bq
-                  mf30 = proj1 ( B⊆FX Bbq ) 
-          ... | tri≈ ¬a bq=bp ¬c = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where
-              mf36 : odef (* bp) (& ((* p) ∩ (* q)))
-              mf36 = IsFilter.filter2 mf30 bbp (subst (λ k → odef k q) (sym bq=bp) bbq) Lpq where
-                  mf30 : IsFilter {L} {P} LP bp
-                  mf30 = proj1 ( B⊆FX Bbp ) 
-          ... | tri> ¬a ¬b bq⊂bp = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where
-              mf36 : odef (* bp) (& ((* p) ∩ (* q)))
-              mf36 = IsFilter.filter2 mf30 bbp (proj2 bq⊂bp bbq) Lpq where
-                  mf30 : IsFilter {L} {P} LP bp
-                  mf30 = proj1 ( B⊆FX Bbp ) 
-          mf32 : ¬ odef (Union B) o∅
-          mf32 record { owner = owner ; ao = bo ; ox = o0 } with proj1 ( B⊆FX bo ) 
-          ... | record { f⊆L = f⊆L ; filter1 = filter1 ; filter2 = filter2 ; proper = proper } = ⊥-elim ( proper o0 )
-          mf14 : IsFilter LP (& (Union B)) 
-          mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = subst (λ k → ¬ odef k o∅) (sym *iso) mf32 } 
-          mf15 :  filter F ⊆ Union B
-          mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where
-               mf22 : odef (filter F) x → odef mf20 x
-               mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx )
-          mf13 : odef FX (& (Union B))
-          mf13 = ⟪ mf14  , subst (λ k → filter F ⊆ k ) (sym *iso) mf15  ⟫
-          mf42 : {z : Ordinal} → odef B z → * z ⊆  Union B
-          mf42 {z} Bz {x} zx = record { owner  = _ ; ao = Bz ; ox = zx }
-          mf40 : {z : Ordinal} → odef B z → (z ≡ & (Union B)) ∨ ( * z ⊂ * (& (Union B)) )
-          mf40 {z} Bz with B⊆FX Bz
-          ... | ⟪ filterz , F⊆z ⟫ with osuc-≡< ( ⊆→o≤ {* z} {Union B} (mf42 Bz) )
-          ... | case1 eq = case1 (trans (sym &iso) eq )
-          ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< & k ) refl (sym *iso) lt  , subst (λ  k → * z ⊆ k) (sym *iso)  (mf42 Bz)  ⟫
-      mx : Maximal  FX
-      mx = Zorn-lemma (∈∅< FX∋F) SUP⊆  
-      imf : IsFilter {L} {P} LP (& (Maximal.maximal mx))
-      imf = proj1 (Maximal.as mx)
-      mf00 : (* (& (Maximal.maximal mx))) ⊆ L
-      mf00 = IsFilter.f⊆L imf   
-      mf01 : { p q : HOD } →  L ∋ q → (* (& (Maximal.maximal mx))) ∋ p →  p ⊆ q  → (* (& (Maximal.maximal mx))) ∋ q
-      mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq 
-              (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) ))
-      mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx)))  ∋ q  → L ∋ (p ∩ q) 
-          → (* (& (Maximal.maximal mx))) ∋ (p ∩ q)
-      mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso (
-          IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq ))
-      mf : Filter {L} {P} LP
-      mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00  
-         ; filter1 = mf01  
-         ; filter2 = mf02 }
-      mf52 : filter F ⊆ Maximal.maximal mx
-      mf52 = subst (λ k → filter F ⊆ k ) *iso (proj2 mf53) where
-         mf53 : FX ∋ Maximal.maximal mx 
-         mf53 = Maximal.as mx 
-      mf50 : (f : Filter LP) → ¬ (filter f ∋ od∅) → filter F ⊆ filter f → ¬ (* (& (zorn.Maximal.maximal mx)) ⊂ filter f)
-      mf50 f proper F⊆f = subst (λ k → ¬ ( k ⊂ filter f )) (sym *iso) (Maximal.¬maximal<x mx ⟪ Filter-is-Filter {L} {P} LP f proper  , mf51 ⟫ ) where
-         mf51 : filter F ⊆ * (& (filter f))
-         mf51 = subst (λ k → filter F ⊆ k ) (sym *iso) F⊆f 
-
-F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q))
-      → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) →  {y : Ordinal} →  (0<F : odef (filter F) y) →  (proper : ¬ (filter F ∋ od∅)) 
-      → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ))
-F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP F 0<F (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) 
-
-
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/maximum-filter.agda	Wed Jan 18 14:09:53 2023 +0900
@@ -0,0 +1,164 @@
+{-# OPTIONS --allow-unsolved-metas #-} 
+
+open import Level
+open import Ordinals
+module maximum-filter {n : Level } (O : Ordinals {n})   where
+
+open import zf
+open import logic
+import OD 
+
+open import Relation.Nullary 
+open import Data.Empty 
+open import Relation.Binary.Core
+open import Relation.Binary.PropositionalEquality
+import BAlgebra 
+
+open BAlgebra O
+
+open inOrdinal O
+open OD O
+open OD.OD
+open ODAxiom odAxiom
+
+import OrdUtil
+import ODUtil
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
+open OrdUtil O
+open ODUtil O
+
+
+import ODC
+open ODC O
+
+open _∧_
+open _∨_
+open Bool
+
+open import filter O
+
+open Filter
+
+
+open import  Relation.Binary
+open import  Relation.Binary.Structures
+
+PO : IsStrictPartialOrder _≡_ _⊂_ 
+PO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
+   ; trans = λ {a} {b} {c} → trans-⊂ {a} {b} {c}
+   ; irrefl = λ x=y x<y → o<¬≡ (cong (&) x=y) (proj1 x<y)
+   ; <-resp-≈ =  record { fst = ( λ {x} {y} {y1} y=y1 xy1 → subst (λ k → x ⊂ k) y=y1 xy1  )
+                        ; snd = (λ {x} {x1} {y} x=x1 x1y → subst (λ k → k ⊂ x) x=x1 x1y ) } }
+
+import zorn 
+open zorn O _⊂_ PO
+
+F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q))
+      → (F : Filter {L} {P} LP) → o∅ o< & L →  {y : Ordinal } → odef (filter F) y →  (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F
+F→Maximum {L} {P} LP NEG CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = subst (λ k → filter F ⊆ k ) (sym *iso) mf52  
+         ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( IsFilter.proper imf)  ; is-maximum = mf50 }  where
+      FX : HOD
+      FX = F⊆X {L} {P} LP F
+      oF = & (filter F)
+      mf11 : { p q : Ordinal } → odef L q → odef (* oF) p →  (* p) ⊆ (* q)  → odef (* oF) q
+      mf11 {p} {q} Lq Fp p⊆q = subst₂ (λ j k → odef j k ) (sym *iso) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) 
+             (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fp) p⊆q )
+      mf12 : { p q : Ordinal } → odef (* oF)  p →  odef (* oF) q  → odef L (& ((* p) ∩ (* q))) → odef (* oF) (& ((* p) ∩ (* q)))
+      mf12 {p} {q} Fp Fq Lpq = subst (λ k → odef k (& ((* p) ∩ (* q))) ) (sym *iso) 
+        ( filter2 F (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fp) (subst₂ (λ j k → odef j k ) *iso (sym &iso)  Fq) Lpq)
+      FX∋F : odef FX (& (filter F))
+      FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = mf11 ; filter2 = mf12 
+        ; proper = subst₂ (λ j k →  ¬ (odef j k) ) (sym *iso) ord-od∅ Fprop  }  
+          , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ 
+      -- 
+      -- if filter B (which contains F) is transitive, Union B is also a filter which contains F
+      --   and this is a SUP
+      -- 
+      SUP⊆ : (B : HOD) → B ⊆ FX → IsTotalOrderSet B → SUP FX B
+      SUP⊆ B B⊆FX OB with trio< (& B) o∅ 
+      ... | tri< a ¬b ¬c = ⊥-elim (¬x<0 a )
+      ... | tri≈ ¬a b ¬c = record { sup = filter F ; isSUP = record { ax = FX∋F ; x≤sup = λ {y} zy → ⊥-elim (o<¬≡ (sym b) (∈∅< zy))  } } 
+      ... | tri> ¬a ¬b 0<B = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = mf40 } } where
+          mf20 : HOD
+          mf20 = ODC.minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B )))
+          mf18 : odef B (& mf20 )
+          mf18 = ODC.x∋minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B )))
+          mf16 : Union B ⊆ L
+          mf16 record { owner = b ; ao = Bb ; ox = bx } = IsFilter.f⊆L ( proj1 ( B⊆FX Bb )) bx
+          mf17 : {p q : Ordinal} → odef L q → odef (* (& (Union B))) p → * p ⊆ * q → odef (* (& (Union B))) q
+          mf17 {p} {q} Lq bp p⊆q with subst (λ k → odef k p ) *iso bp
+          ... | record { owner = owner ; ao = ao ; ox = ox } = subst (λ k → odef k q) (sym *iso) 
+                record { owner = owner ; ao = ao ; ox = IsFilter.filter1 mf30 Lq ox p⊆q } where
+              mf30 : IsFilter {L} {P} LP owner
+              mf30 = proj1 ( B⊆FX ao ) 
+          mf31 : {p q : Ordinal} → odef (* (& (Union B))) p → odef (* (& (Union B))) q → odef L (& ((* p) ∩ (* q))) → odef (* (& (Union B))) (& ((* p) ∩ (* q)))
+          mf31 {p} {q} bp bq Lpq with subst (λ k → odef k p ) *iso bp | subst (λ k → odef k q ) *iso bq
+          ... | record { owner = bp ; ao = Bbp ; ox = bbp } | record { owner = bq ; ao = Bbq ; ox = bbq } 
+             with OB (subst (λ k → odef B k) (sym &iso) Bbp) (subst (λ k → odef B k) (sym &iso) Bbq)
+          ... | tri< bp⊂bq ¬b ¬c = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bq ; ao = Bbq ; ox = mf36 } where
+              mf36 : odef (* bq) (& ((* p) ∩ (* q)))
+              mf36 = IsFilter.filter2 mf30 (proj2 bp⊂bq bbp) bbq Lpq where
+                  mf30 : IsFilter {L} {P} LP bq
+                  mf30 = proj1 ( B⊆FX Bbq ) 
+          ... | tri≈ ¬a bq=bp ¬c = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where
+              mf36 : odef (* bp) (& ((* p) ∩ (* q)))
+              mf36 = IsFilter.filter2 mf30 bbp (subst (λ k → odef k q) (sym bq=bp) bbq) Lpq where
+                  mf30 : IsFilter {L} {P} LP bp
+                  mf30 = proj1 ( B⊆FX Bbp ) 
+          ... | tri> ¬a ¬b bq⊂bp = subst₂ (λ j k → odef j k ) (sym  *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where
+              mf36 : odef (* bp) (& ((* p) ∩ (* q)))
+              mf36 = IsFilter.filter2 mf30 bbp (proj2 bq⊂bp bbq) Lpq where
+                  mf30 : IsFilter {L} {P} LP bp
+                  mf30 = proj1 ( B⊆FX Bbp ) 
+          mf32 : ¬ odef (Union B) o∅
+          mf32 record { owner = owner ; ao = bo ; ox = o0 } with proj1 ( B⊆FX bo ) 
+          ... | record { f⊆L = f⊆L ; filter1 = filter1 ; filter2 = filter2 ; proper = proper } = ⊥-elim ( proper o0 )
+          mf14 : IsFilter LP (& (Union B)) 
+          mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = subst (λ k → ¬ odef k o∅) (sym *iso) mf32 } 
+          mf15 :  filter F ⊆ Union B
+          mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where
+               mf22 : odef (filter F) x → odef mf20 x
+               mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx )
+          mf13 : odef FX (& (Union B))
+          mf13 = ⟪ mf14  , subst (λ k → filter F ⊆ k ) (sym *iso) mf15  ⟫
+          mf42 : {z : Ordinal} → odef B z → * z ⊆  Union B
+          mf42 {z} Bz {x} zx = record { owner  = _ ; ao = Bz ; ox = zx }
+          mf40 : {z : Ordinal} → odef B z → (z ≡ & (Union B)) ∨ ( * z ⊂ * (& (Union B)) )
+          mf40 {z} Bz with B⊆FX Bz
+          ... | ⟪ filterz , F⊆z ⟫ with osuc-≡< ( ⊆→o≤ {* z} {Union B} (mf42 Bz) )
+          ... | case1 eq = case1 (trans (sym &iso) eq )
+          ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< & k ) refl (sym *iso) lt  , subst (λ  k → * z ⊆ k) (sym *iso)  (mf42 Bz)  ⟫
+      mx : Maximal  FX
+      mx = Zorn-lemma (∈∅< FX∋F) SUP⊆  
+      imf : IsFilter {L} {P} LP (& (Maximal.maximal mx))
+      imf = proj1 (Maximal.as mx)
+      mf00 : (* (& (Maximal.maximal mx))) ⊆ L
+      mf00 = IsFilter.f⊆L imf   
+      mf01 : { p q : HOD } →  L ∋ q → (* (& (Maximal.maximal mx))) ∋ p →  p ⊆ q  → (* (& (Maximal.maximal mx))) ∋ q
+      mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq 
+              (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) ))
+      mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx)))  ∋ q  → L ∋ (p ∩ q) 
+          → (* (& (Maximal.maximal mx))) ∋ (p ∩ q)
+      mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso (
+          IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq ))
+      mf : Filter {L} {P} LP
+      mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00  
+         ; filter1 = mf01  
+         ; filter2 = mf02 }
+      mf52 : filter F ⊆ Maximal.maximal mx
+      mf52 = subst (λ k → filter F ⊆ k ) *iso (proj2 mf53) where
+         mf53 : FX ∋ Maximal.maximal mx 
+         mf53 = Maximal.as mx 
+      mf50 : (f : Filter LP) → ¬ (filter f ∋ od∅) → filter F ⊆ filter f → ¬ (* (& (zorn.Maximal.maximal mx)) ⊂ filter f)
+      mf50 f proper F⊆f = subst (λ k → ¬ ( k ⊂ filter f )) (sym *iso) (Maximal.¬maximal<x mx ⟪ Filter-is-Filter {L} {P} LP f proper  , mf51 ⟫ ) where
+         mf51 : filter F ⊆ * (& (filter f))
+         mf51 = subst (λ k → filter F ⊆ k ) (sym *iso) F⊆f 
+
+F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q))
+      → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) →  {y : Ordinal} →  (0<F : odef (filter F) y) →  (proper : ¬ (filter F ∋ od∅)) 
+      → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ))
+F→ultra {L} {P} LP NEG CAP F 0<L 0<F proper = max→ultra {L} {P} LP CAP F 0<F (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) 
+
+