Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 9:5ed16e2d8eb7
try to fix axiom of replacement
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 May 2019 21:18:38 +0900 |
parents | cb014a103467 |
children | 8022e14fce74 |
files | zf.agda |
diffstat | 1 files changed, 22 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/zf.agda Sun May 12 11:08:17 2019 +0900 +++ b/zf.agda Sun May 12 21:18:38 2019 +0900 @@ -30,15 +30,24 @@ infixr 140 _∨_ infixr 150 _⇔_ +record Func {n m : Level } (ZFSet : Set n) (_≈_ : Rel ZFSet m) : Set (n ⊔ suc m) where + field + Restrict : ZFSet + rel : Rel ZFSet m + dom : ( y : ZFSet ) → ∀ { x : ZFSet } → rel x y + fun-eq : { x y z : ZFSet } → ( rel x y ∧ rel x z ) → y ≈ z + +open Func + + record IsZF {n m : Level } (ZFSet : Set n) (_∋_ : ( A x : ZFSet ) → Set m) - (_≈_ : ( A B : ZFSet ) → Set m) + (_≈_ : Rel ZFSet m) (∅ : ZFSet) (_×_ : ( A B : ZFSet ) → ZFSet) (Union : ( A : ZFSet ) → ZFSet) (Power : ( A : ZFSet ) → ZFSet) - (Restrict : ( ZFSet → Set m ) → ZFSet) (infinite : ZFSet) : Set (suc (n ⊔ m)) where field @@ -52,10 +61,12 @@ A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → ∀{ A∋x : Set m } → Set m _⊆_ A B {x} {A∋x} = B ∋ x + Repl : ( ψ : ZFSet → Set m ) → Func ZFSet _≈_ + Repl ψ = record { Restrict = {!!} ; rel = {!!} ; dom = {!!} ; fun-eq = {!!} } _∩_ : ( A B : ZFSet ) → ZFSet - A ∩ B = Restrict ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) + A ∩ B = Restrict ( Repl ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ) _∪_ : ( A B : ZFSet ) → ZFSet - A ∪ B = Restrict ( λ x → ( A ∋ x ) ∨ ( B ∋ x ) ) + A ∪ B = Restrict ( Repl ( λ x → ( A ∋ x ) ∨ ( B ∋ x ) ) ) infixr 200 _∈_ infixr 230 _∩_ _∪_ infixr 220 _⊆_ @@ -71,10 +82,10 @@ regularity : ∀( x : ZFSet ) → ¬ (x ≈ ∅) → ( smaller x ∈ x ∧ ( smaller x ∩ x ≈ ∅ ) ) -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite - infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ Restrict ( λ y → x ≈ y )) ∈ infinite + infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ Restrict ( Repl ( λ y → x ≈ y ))) ∈ infinite -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) -- this form looks like specification - replacement : ( ψ : ZFSet → Set m ) → ( x : ZFSet ) → x ∈ Restrict ψ → ψ x + replacement : ( ψ : Func ZFSet _≈_ ) → ∀ ( y : ZFSet ) → ( y ∈ Restrict ψ ) → {!!} -- dom ψ y record ZF {n m : Level } : Set (suc (n ⊔ m)) where infixr 210 _×_ @@ -89,9 +100,8 @@ _×_ : ( A B : ZFSet ) → ZFSet Union : ( A : ZFSet ) → ZFSet Power : ( A : ZFSet ) → ZFSet - Restrict : ( ZFSet → Set m ) → ZFSet infinite : ZFSet - isZF : IsZF ZFSet _∋_ _≈_ ∅ _×_ Union Power Restrict infinite + isZF : IsZF ZFSet _∋_ _≈_ ∅ _×_ Union Power infinite module reguraliry-m {n m : Level } ( zf : ZF {m} {n} ) where @@ -101,16 +111,15 @@ _≈_ = ZF._≈_ zf ZFSet = ZF.ZFSet - Restrict = ZF.Restrict zf ∅ = ZF.∅ zf _∩_ = ( IsZF._∩_ ) (ZF.isZF zf) _∋_ = ZF._∋_ zf replacement = IsZF.replacement ( ZF.isZF zf ) - russel : ( x : ZFSet zf ) → x ≈ Restrict ( λ x → ¬ ( x ∋ x ) ) → ⊥ - russel x eq with x ∋ x - ... | x∋x with replacement ( λ x → ¬ ( x ∋ x )) x {!!} - ... | r1 = {!!} +-- russel : ( x : ZFSet zf ) → x ≈ Restrict ( λ x → ¬ ( x ∋ x ) ) → ⊥ +-- russel x eq with x ∋ x +-- ... | x∋x with replacement ( λ x → ¬ ( x ∋ x )) x {!!} +-- ... | r1 = {!!}