Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 593:5f329a1c1d09
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jun 2022 10:47:53 +0900 |
parents | f48c9f4bafdb |
children | 4af13e000128 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 13 09:22:14 2022 +0900 +++ b/src/zorn.agda Mon Jun 13 10:47:53 2022 +0900 @@ -243,18 +243,12 @@ record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p : Ordinal) ( x : Ordinal ) : Set n where field ax : odef A x - fc∨sup : FClosure A f p x ∨ ((a : Ordinal) → FClosure A f p a → a << x ) - -- f-min : (x1 : Ordinal) → ( (a : Ordinal) → FClosure A f p a → a << x1 ) → x o≤ x1 - -FCSet : (A : HOD) → ( f : Ordinal → Ordinal ) → (sup : Ordinal) → HOD -FCSet A f sup = record { od = record { def = λ x → FChain A f sup x } ; odmax = & A ; <odmax = fcs00 } - where - fcs00 : {y : Ordinal} → FChain A f sup y → y o< & A - fcs00 {y} fc = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (FChain.ax fc ))) + fc∨sup : FClosure A f p x ∨ ((a : Ordinal) → FClosure A f p a → (a ≡ x) ∨ (a << x) ) + f-min : (x1 : Ordinal) → ( (a : Ordinal) → FClosure A f p a → (a ≡ x1 ) ∨ (a << x1) ) → FClosure A f p x1 ∨ ( x o≤ x1 ) data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) : (x : Ordinal) → Set n where - Finit : {z : Ordinal} → z ≡ (& (* y , * y)) → Fc∨sup A ay f z - Fc : {x : Ordinal} → (fc : Fc∨sup A ay f x ) → Fc∨sup A ay f (& (FCSet A f x)) + Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f z + Fc : {p x : Ordinal} → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -268,7 +262,7 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - fc∨sup : {s c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A ca) f s ∧ odef (* s) c + fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f c record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -597,11 +591,31 @@ → ((c : Ordinal) → c o< a → c o< b → (za : ZChain A y f c) (zb : ZChain A y f b) → chain za ⊆' chain zb) → a o< b → (za : ZChain A y f a) (zb : ZChain A y f b) → chain za ⊆' chain zb uind a previ a<b za zb {i} zai = um01 where - FC : Fc∨sup A (chain⊆A za zai) f i ∧ odef {!!} i + FC : Fc∨sup A (chain⊆A za (chain∋x za)) f i FC = fc∨sup za zai um01 : odef (chain zb) i um01 with FC - ... | t = {!!} + ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) + ... | Fc {p} {x1} pFC fc with initial za zai + ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) + ... | case2 y<i = is-max zb {y} {i} (chain∋x zb) i<b (chain⊆A za zai) um05 y<i + where + i<b : i o< osuc b + i<b = {!!} + um05 : HasPrev A (chain zb) (chain⊆A za zai) f ∨ IsSup A (chain zb) (chain⊆A za zai) + um05 with FChain.fc∨sup fc + ... | case1 (init {p} ap i=p) = case2 {!!} + ... | case1 (fsuc p pfci) = case1 record { y = p ; ay = um07 ; x=fy = refl } where + -- p should be the top of fc + p<a : p o< a + p<a = {!!} + um08 : odef (chain (prev p {!!} ay)) p + um08 = {!!} + um07 : odef (chain zb) p + um07 = previ p p<a {!!} (prev p {!!} ay ) zb um08 + ... | case2 supi = case2 record { x<sup = um06 supi } where + um06 : ((z : Ordinal) → FClosure A f p z → (z ≡ i) ∨ (z << i) ) → {w : Ordinal} → odef (chain zb) w → (w ≡ i) ∨ (w << i) + um06 supi = {!!} u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy = {!!} --- ux ⊆ uy ∨ uy ⊆ ux