Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 594:4af13e000128
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jun 2022 16:14:55 +0900 |
parents | 5f329a1c1d09 |
children | 96f377d87427 |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 13 10:47:53 2022 +0900 +++ b/src/zorn.agda Mon Jun 13 16:14:55 2022 +0900 @@ -596,25 +596,25 @@ um01 : odef (chain zb) i um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) - ... | Fc {p} {x1} pFC fc with initial za zai + ... | Fc {p} {i} pFC fc with initial za zai ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) - ... | case2 y<i = is-max zb {y} {i} (chain∋x zb) i<b (chain⊆A za zai) um05 y<i - where - i<b : i o< osuc b - i<b = {!!} - um05 : HasPrev A (chain zb) (chain⊆A za zai) f ∨ IsSup A (chain zb) (chain⊆A za zai) - um05 with FChain.fc∨sup fc - ... | case1 (init {p} ap i=p) = case2 {!!} - ... | case1 (fsuc p pfci) = case1 record { y = p ; ay = um07 ; x=fy = refl } where - -- p should be the top of fc - p<a : p o< a - p<a = {!!} - um08 : odef (chain (prev p {!!} ay)) p - um08 = {!!} - um07 : odef (chain zb) p - um07 = previ p p<a {!!} (prev p {!!} ay ) zb um08 - ... | case2 supi = case2 record { x<sup = um06 supi } where - um06 : ((z : Ordinal) → FClosure A f p z → (z ≡ i) ∨ (z << i) ) → {w : Ordinal} → odef (chain zb) w → (w ≡ i) ∨ (w << i) + ... | case2 y<i with FChain.fc∨sup fc + ... | case1 fci = um10 i p y<i fci where + um10 : (i p : Ordinal) → y << i → FClosure A f p i → odef (chain zb) i + um10 i p y<i (init {q} ap q=p) = um02 where + q<a : q o< a + q<a = {!!} + um03 : odef (chain (prev q (ordtrans q<a (ordtrans a<b b<x)) ay)) q + um03 = ? + um02 : odef (chain zb) q + um02 = previ a {!!} {!!} za zb ? + um10 i p y<i (fsuc j pfci) = f-next zb (um10 j p y<j pfci) where + y<j : y << j + y<j = {!!} + ... | case2 supi = um06 supi where + um05 : FChain A f p i + um05 = fc + um06 : ((z : Ordinal) → FClosure A f p z → (z ≡ i) ∨ (z << i) ) → odef (chain zb) i um06 supi = {!!} u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy = {!!}