Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 595:96f377d87427
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jun 2022 23:11:08 +0900 |
parents | 4af13e000128 |
children | f484cff027e4 |
files | src/zorn.agda |
diffstat | 1 files changed, 14 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 13 16:14:55 2022 +0900 +++ b/src/zorn.agda Mon Jun 13 23:11:08 2022 +0900 @@ -248,7 +248,7 @@ data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) : (x : Ordinal) → Set n where Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f z - Fc : {p x : Ordinal} → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x + Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -264,6 +264,7 @@ → * a < * b → odef chain b fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f c + record Maximal ( A : HOD ) : Set (Level.suc n) where field maximal : HOD @@ -593,29 +594,22 @@ uind a previ a<b za zb {i} zai = um01 where FC : Fc∨sup A (chain⊆A za (chain∋x za)) f i FC = fc∨sup za zai + FCb : Fc∨sup A (chain⊆A zb (chain∋x zb)) f i + FCb = {!!} um01 : odef (chain zb) i um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) - ... | Fc {p} {i} pFC fc with initial za zai + ... | Fc {p} {i} p<i pFC fc with initial za zai ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) - ... | case2 y<i with FChain.fc∨sup fc - ... | case1 fci = um10 i p y<i fci where - um10 : (i p : Ordinal) → y << i → FClosure A f p i → odef (chain zb) i - um10 i p y<i (init {q} ap q=p) = um02 where - q<a : q o< a - q<a = {!!} - um03 : odef (chain (prev q (ordtrans q<a (ordtrans a<b b<x)) ay)) q - um03 = ? - um02 : odef (chain zb) q - um02 = previ a {!!} {!!} za zb ? - um10 i p y<i (fsuc j pfci) = f-next zb (um10 j p y<j pfci) where - y<j : y << j - y<j = {!!} - ... | case2 supi = um06 supi where - um05 : FChain A f p i - um05 = fc - um06 : ((z : Ordinal) → FClosure A f p z → (z ≡ i) ∨ (z << i) ) → odef (chain zb) i - um06 supi = {!!} + ... | case2 y<i with (FChain.fc∨sup fc) + ... | case1 fc = um02 i fc where + um02 : (i : Ordinal) → FClosure A f p i → odef (chain zb) i + um02 i (init ap i=p ) = {!!} + um02 i (fsuc j fc) = f-next zb ( um02 j fc ) + ... | case2 sup = {!!} + -- is-max zb (chain∋x zb) {!!} (chain⊆A za zai) {!!} y<i where + -- pFC0 : Fc∨sup A (chain⊆A za (chain∋x za)) f p + -- pFC0 = pFC u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy = {!!} --- ux ⊆ uy ∨ uy ⊆ ux