Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 596:f484cff027e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 00:25:59 +0900 |
parents | 96f377d87427 |
children | 2595d2f6487b |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 13 23:11:08 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 00:25:59 2022 +0900 @@ -248,7 +248,7 @@ data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) : (x : Ordinal) → Set n where Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f z - Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x + Fc : {p x : Ordinal} → p o< osuc x → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -584,27 +584,27 @@ u-initial {z} u = ZChain.initial ( uzc u ) (UZFChain.chain∋z u) u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } - u-mono : ( a b : Ordinal ) → b o< x → a o< b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb - u-mono a b b<x = TransFinite {λ a → a o< b → (za : ZChain A y f a) (zb : ZChain A y f b) + u-mono : ( a b : Ordinal ) → b o< x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb + u-mono a b b<x = TransFinite {λ a → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb } uind a where open ZChain uind : (a : Ordinal) - → ((c : Ordinal) → c o< a → c o< b → (za : ZChain A y f c) (zb : ZChain A y f b) → chain za ⊆' chain zb) - → a o< b → (za : ZChain A y f a) (zb : ZChain A y f b) → chain za ⊆' chain zb - uind a previ a<b za zb {i} zai = um01 where + → ((c : Ordinal) → c o< a → c o< osuc b → (za : ZChain A y f c) (zb : ZChain A y f b) → chain za ⊆' chain zb) + → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → chain za ⊆' chain zb + uind a previ a≤b za zb {i} zai = um01 where FC : Fc∨sup A (chain⊆A za (chain∋x za)) f i FC = fc∨sup za zai - FCb : Fc∨sup A (chain⊆A zb (chain∋x zb)) f i - FCb = {!!} + -- y≤fc : {a p : Ordinal} → Fc∨sup A p f i → * y ≤ * p + -- y≤fc = {!!} um01 : odef (chain zb) i um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) - ... | Fc {p} {i} p<i pFC fc with initial za zai + ... | Fc {p} {i} p≤i pFC fc with initial za zai ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) ... | case2 y<i with (FChain.fc∨sup fc) ... | case1 fc = um02 i fc where um02 : (i : Ordinal) → FClosure A f p i → odef (chain zb) i - um02 i (init ap i=p ) = {!!} + um02 i (init ap i=p ) = subst (λ k → odef (chain zb) k ) (sym i=p) (previ a {!!} {!!} za zb {!!} ) where um02 i (fsuc j fc) = f-next zb ( um02 j fc ) ... | case2 sup = {!!} -- is-max zb (chain∋x zb) {!!} (chain⊆A za zai) {!!} y<i where