Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 597:2595d2f6487b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 00:44:43 +0900 |
parents | f484cff027e4 |
children | 7a6d3f349395 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 14 00:25:59 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 00:44:43 2022 +0900 @@ -585,13 +585,12 @@ u-chain∋x : odef Uz y u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) } u-mono : ( a b : Ordinal ) → b o< x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za ⊆' ZChain.chain zb - u-mono a b b<x = TransFinite {λ a → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) - → ZChain.chain za ⊆' ZChain.chain zb } uind a where + u-mono a b b<x a≤b za zb {i} zai = TransFinite0 {λ i → odef (chain za) i → odef (chain zb) i } uind i zai where open ZChain - uind : (a : Ordinal) - → ((c : Ordinal) → c o< a → c o< osuc b → (za : ZChain A y f c) (zb : ZChain A y f b) → chain za ⊆' chain zb) - → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → chain za ⊆' chain zb - uind a previ a≤b za zb {i} zai = um01 where + uind : (i : Ordinal) + → ((j : Ordinal) → j o< i → odef (chain za) j → odef (chain zb) j) + → odef (chain za) i → odef (chain zb) i + uind i previ zai = um01 where FC : Fc∨sup A (chain⊆A za (chain∋x za)) f i FC = fc∨sup za zai -- y≤fc : {a p : Ordinal} → Fc∨sup A p f i → * y ≤ * p @@ -603,8 +602,12 @@ ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) ... | case2 y<i with (FChain.fc∨sup fc) ... | case1 fc = um02 i fc where - um02 : (i : Ordinal) → FClosure A f p i → odef (chain zb) i - um02 i (init ap i=p ) = subst (λ k → odef (chain zb) k ) (sym i=p) (previ a {!!} {!!} za zb {!!} ) where + um02 : (i2 : Ordinal) → FClosure A f p i2 → odef (chain zb) i2 + um02 i2 (init ap i=p ) = subst (λ k → odef (chain zb) k ) (sym i=p) (previ p um03 um04 ) where + um03 : p o< i + um03 = {!!} + um04 : odef (chain za) p + um04 = {!!} um02 i (fsuc j fc) = f-next zb ( um02 j fc ) ... | case2 sup = {!!} -- is-max zb (chain∋x zb) {!!} (chain⊆A za zai) {!!} y<i where