Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 598:7a6d3f349395
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jun 2022 01:50:31 +0900 |
parents | 2595d2f6487b |
children | d041941a8866 |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 14 00:44:43 2022 +0900 +++ b/src/zorn.agda Tue Jun 14 01:50:31 2022 +0900 @@ -240,15 +240,14 @@ ... | case1 eq = subst (λ k → odef A k ) (sym (trans eq &iso)) ay ... | case2 eq = subst (λ k → odef A k ) (sym (trans eq &iso)) ay -record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p : Ordinal) ( x : Ordinal ) : Set n where +record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p c : Ordinal) ( x : Ordinal ) : Set n where field - ax : odef A x - fc∨sup : FClosure A f p x ∨ ((a : Ordinal) → FClosure A f p a → (a ≡ x) ∨ (a << x) ) - f-min : (x1 : Ordinal) → ( (a : Ordinal) → FClosure A f p a → (a ≡ x1 ) ∨ (a << x1) ) → FClosure A f p x1 ∨ ( x o≤ x1 ) + fc∨sup : FClosure A f p x + chain∋p : odef (* c) p -data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) : (x : Ordinal) → Set n where - Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f z - Fc : {p x : Ordinal} → p o< osuc x → Fc∨sup A ay f p → FChain A f p x → Fc∨sup A ay f x +data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y) ( f : Ordinal → Ordinal ) (c : Ordinal) : (x : Ordinal) → Set n where + Finit : {z : Ordinal} → z ≡ y → Fc∨sup A ay f c z + Fc : {p x : Ordinal} → p o< x → Fc∨sup A ay f c p → FChain A f p c x → Fc∨sup A ay f c x record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -262,7 +261,7 @@ is-max : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc z → (ab : odef A b) → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b - fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f c + fc∨sup : {c : Ordinal } → ( ca : odef chain c ) → Fc∨sup A (chain⊆A chain∋x) f (& chain) c record Maximal ( A : HOD ) : Set (Level.suc n) where @@ -591,31 +590,23 @@ → ((j : Ordinal) → j o< i → odef (chain za) j → odef (chain zb) j) → odef (chain za) i → odef (chain zb) i uind i previ zai = um01 where - FC : Fc∨sup A (chain⊆A za (chain∋x za)) f i + FC : Fc∨sup A (chain⊆A za (chain∋x za)) f (& (chain za)) i FC = fc∨sup za zai - -- y≤fc : {a p : Ordinal} → Fc∨sup A p f i → * y ≤ * p - -- y≤fc = {!!} um01 : odef (chain zb) i um01 with FC ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb ) - ... | Fc {p} {i} p≤i pFC fc with initial za zai - ... | case1 y=i = subst (λ k → odef (chain zb) k ) (subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) y=i)) ( chain∋x zb ) - ... | case2 y<i with (FChain.fc∨sup fc) - ... | case1 fc = um02 i fc where + ... | Fc {p} {i} p<i pFC FC with (FChain.fc∨sup FC) + ... | fc = um02 i fc where um02 : (i2 : Ordinal) → FClosure A f p i2 → odef (chain zb) i2 - um02 i2 (init ap i=p ) = subst (λ k → odef (chain zb) k ) (sym i=p) (previ p um03 um04 ) where - um03 : p o< i - um03 = {!!} + um02 i2 (init ap i2=p ) = subst (λ k → odef (chain zb) k ) (sym i2=p) (previ p p<i um04 ) where um04 : odef (chain za) p - um04 = {!!} + um04 = subst (λ k → odef k p ) *iso ( FChain.chain∋p FC ) um02 i (fsuc j fc) = f-next zb ( um02 j fc ) - ... | case2 sup = {!!} - -- is-max zb (chain∋x zb) {!!} (chain⊆A za zai) {!!} y<i where - -- pFC0 : Fc∨sup A (chain⊆A za (chain∋x za)) f p - -- pFC0 = pFC u-total : IsTotalOrderSet Uz - u-total {x} {y} ux uy = {!!} - --- ux ⊆ uy ∨ uy ⊆ ux + u-total {x} {y} ux uy with trio< (UZFChain.u ux) (UZFChain.u uy) + ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) (u-mono (UZFChain.u ux) (UZFChain.u uy) {!!} {!!} (uzc ux) (uzc uy) (UZFChain.chain∋z ux)) (UZFChain.chain∋z uy) + ... | tri≈ ¬a b ¬c = tri≈ {!!} {!!} {!!} + ... | tri> ¬a ¬b c = ZChain.f-total (uzc ux) (UZFChain.chain∋z ux) (u-mono (UZFChain.u uy) (UZFChain.u ux) {!!} {!!} (uzc uy) (uzc ux) (UZFChain.chain∋z uy)) zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM