Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 663:5f85e71b2490
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 03 Jul 2022 17:08:55 +0900 |
parents | a45ec34b9fa7 |
children | 6a8d13b02a50 |
files | src/zorn.agda |
diffstat | 1 files changed, 51 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 03 14:20:22 2022 +0900 +++ b/src/zorn.agda Sun Jul 03 17:08:55 2022 +0900 @@ -250,6 +250,9 @@ ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) +UnionCF : (A : HOD) (x : Ordinal) (chainf : (z : Ordinal ) → z o< x → HOD ) → HOD +UnionCF A x chainf = record { od = record { def = λ z → odef A z ∧ UChain x chainf z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + data Chain (A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where ch-noax : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (noax : ¬ odef A x ) (c : Chain A f ay (Oprev.oprev op) chain) → Chain A f ay x chain ch-hasprev : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (ax : odef A x ) @@ -259,14 +262,26 @@ record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain - ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) + ch-noax-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( noax : ¬ odef A x ) + → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) + → Chain A f ay x (UnionCF A x chainf ) + ch-hasprev-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) + → ( h : HasPrev A (UnionCF A x chainf) ax f ) + → Chain A f ay x (UnionCF A x chainf ) + ch-is-sup-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) + → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) + → ( nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) ( sup : IsSup A (UnionCF A x chainf) ax ) → Chain A f ay x - record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y z ) } + record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y x ) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + ch-skip-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) + → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) + → (nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) (nsup : ¬ IsSup A (UnionCF A x chainf) ax ) + → Chain A f ay x (UnionCF A x chainf) ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f ay (& A) chain → (x : Ordinal) → x o< & A → HOD -ChainF A f {y} ay chain Ch x x<a = ? +ChainF A f {y} ay chain Ch x x<a = {!!} record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -275,7 +290,7 @@ record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD - chain = ? + chain = {!!} field chain⊆A : chain ⊆' A chain∋init : odef chain init @@ -440,28 +455,30 @@ sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where - -- A∋sc -- x is a sup of zc - sup0 : SUP A (ZChain1.chain sc ) - sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where - x21 : {y : HOD} → (ZChain1.chain sc ) ∋ y → (y ≡ * x) ∨ (y < * x) - x21 {y} zy with IsSup.x<sup is-sup zy - ... | case1 y=x = case1 (subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) ) - ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x ) - sp : HOD - sp = SUP.sup sup0 schain : HOD - schain = record { od = record { def = λ x → odef A x ∧ ( odef (ZChain1.chain sc ) x ∨ (FClosure A f (& sp) x)) } + schain = record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - sc8 : Chain A f ay ? ? - sc8 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) ? ? + sc7 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f + sc7 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } sc9 : Chain A f ay x schain - sc9 = ? - ... | case2 ¬x=sup = {!!} - ... | no ¬ox = ? where - supf : (z : Ordinal) → z o< x → HOD - supf = ? - sc5 : HOD - sc5 = record { od = record { def = λ z → odef A z ∧ (UChain x supf z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + sc9 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc7 + record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-sup lt) } + ... | case2 ¬x=sup = record { chain = chain sc ; chain-uniq = ch-skip op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc17 sc10 } where + sc17 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f + sc17 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } + sc10 : ¬ IsSup A (chain sc) (subst (λ k → odef A k) &iso ax) + sc10 not = ¬x=sup ( record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k ) ) (sym &iso) ( IsSup.x<sup not lt ) } ) + ... | no ¬ox = {!!} where + chainf : (z : Ordinal) → z o< x → HOD + chainf z z<x = ZChain1.chain ( prev z z<x ) + sc4 : ZChain1 A f ay x + sc4 with ODC.∋-p O A (* x) + ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? } + ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) + ... | case1 pr = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-hasprev-union ¬ox (subst (λ k → odef A k) &iso ax) ? ? } + ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x chainf) ax ) + ... | case1 is-sup = ? + ... | case2 ¬x=sup = ? ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x @@ -484,11 +501,11 @@ -- no-extenion : ( {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → HasPrev A (ZChain.chain zc) ab f ∨ IsSup A (ZChain.chain zc) ab → - * a < * b → odef (ZChain.chain zc) b ) → ZChain A f ay ? x - no-extenion is-max = record { chain⊆A = ? -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) + * a < * b → odef (ZChain.chain zc) b ) → ZChain A f ay {!!} x + no-extenion is-max = record { chain⊆A = {!!} -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) ; initial = subst (λ k → {y₁ : Ordinal} → odef k y₁ → * y ≤ * y₁ ) {!!} (ZChain.initial zc) ; f-next = subst (λ k → {a : Ordinal} → odef k a → odef k (f a) ) {!!} (ZChain.f-next zc) - ; f-total = ? + ; f-total = {!!} ; chain∋init = subst (λ k → odef k y ) {!!} (ZChain.chain∋init zc) ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) {!!} is-max } where @@ -637,24 +654,24 @@ ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) ... | case2 b=sup = ⊥-elim ( ¬x=sup record { x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) - ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ? + ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case supf : Ordinal → HOD supf x = ZChain1.chain zc0 - uzc : {z : Ordinal} → (u : UChain x ? z) → ZChain A f ay zc0 (UChain.u u) + uzc : {z : Ordinal} → (u : UChain x {!!} z) → ZChain A f ay zc0 (UChain.u u) uzc {z} u = prev (UChain.u u) (UChain.u<x u) Uz : HOD - Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z ? x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? } + Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z {!!} x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = {!!} } u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) - u-next {z} = ? + u-next {z} = {!!} -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } -- u-next {z} (case2 u) = case2 ( fsuc _ u ) u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z - u-initial {z} = ? + u-initial {z} = {!!} -- (case1 u) = ZChain.initial ( uzc u ) (UChain.chain∋z u) -- u-initial {z} (case2 u) = s≤fc _ f mf u u-chain∋init : odef Uz y - u-chain∋init = ? -- case2 ( init ay ) + u-chain∋init = {!!} -- case2 ( init ay ) supf0 : Ordinal → HOD supf0 z with trio< z x ... | tri< a ¬b ¬c = ZChain1.chain zc0 @@ -662,7 +679,7 @@ ... | tri> ¬a ¬b c = Uz u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x - ... | s | t = ? + ... | s | t = {!!} seq : Uz ≡ supf0 x seq with trio< x x @@ -671,7 +688,7 @@ ... | tri> ¬a ¬b c = refl seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 ≡ supf0 b seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = ? -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a + ... | tri< a ¬b ¬c = {!!} -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y