changeset 1091:63c1167b2343

fix comments
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 20 Dec 2022 11:20:52 +0900 (2022-12-20)
parents 2cf182f0f583
children 87c2da3811c3 08b6aa6870d9
files src/OD.agda src/zorn.agda
diffstat 2 files changed, 180 insertions(+), 176 deletions(-) [+]
line wrap: on
line diff
--- a/src/OD.agda	Mon Dec 19 09:50:51 2022 +0900
+++ b/src/OD.agda	Tue Dec 20 11:20:52 2022 +0900
@@ -1,12 +1,12 @@
-{-# OPTIONS --allow-unsolved-metas #-} 
+{-# OPTIONS --allow-unsolved-metas #-}
 open import Level
 open import Ordinals
 module OD {n : Level } (O : Ordinals {n} ) where
 
 open import zf
-open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ )
 open import  Relation.Binary.PropositionalEquality hiding ( [_] )
-open import Data.Nat.Properties 
+open import Data.Nat.Properties
 open import Data.Empty
 open import Relation.Nullary
 open import Relation.Binary  hiding (_⇔_)
@@ -17,8 +17,8 @@
 open import nat
 
 open Ordinals.Ordinals  O
-open Ordinals.IsOrdinals isOrdinal 
-open Ordinals.IsNext isNext 
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
 open OrdUtil O
 
 -- Ordinal Definable Set
@@ -35,24 +35,24 @@
 
 record _==_  ( a b :  OD  ) : Set n where
   field
-     eq→ : ∀ { x : Ordinal  } → def a x → def b x 
-     eq← : ∀ { x : Ordinal  } → def b x → def a x 
+     eq→ : ∀ { x : Ordinal  } → def a x → def b x
+     eq← : ∀ { x : Ordinal  } → def b x → def a x
 
 ==-refl :  {  x :  OD  } → x == x
 ==-refl  {x} = record { eq→ = λ x → x ; eq← = λ x → x }
 
-open  _==_ 
+open  _==_
 
 ==-trans : { x y z : OD } →  x == y →  y == z →  x ==  z
 ==-trans x=y y=z  = record { eq→ = λ {m} t → eq→ y=z (eq→ x=y t) ; eq← =  λ {m} t → eq← x=y (eq← y=z t) }
 
-==-sym : { x y  : OD } →  x == y →  y == x 
+==-sym : { x y  : OD } →  x == y →  y == x
 ==-sym x=y = record { eq→ = λ {m} t → eq← x=y t ; eq← =  λ {m} t → eq→ x=y t }
 
 
-⇔→== :  {  x y :  OD  } → ( {z : Ordinal } → (def x z ⇔  def y z)) → x == y 
-eq→ ( ⇔→==  {x} {y}  eq ) {z} m = proj1 eq m 
-eq← ( ⇔→==  {x} {y}  eq ) {z} m = proj2 eq m 
+⇔→== :  {  x y :  OD  } → ( {z : Ordinal } → (def x z ⇔  def y z)) → x == y
+eq→ ( ⇔→==  {x} {y}  eq ) {z} m = proj1 eq m
+eq← ( ⇔→==  {x} {y}  eq ) {z} m = proj2 eq m
 
 -- next assumptions are our axiom
 --
@@ -62,7 +62,7 @@
 --  If all ZF Set have supreme upper bound, the solutions of OD have to be bounded, i.e.
 --  bbounded ODs are ZF Set. Unbounded ODs are classes.
 --
---  In classical Set Theory, HOD is used, as a subset of OD, 
+--  In classical Set Theory, HOD is used, as a subset of OD,
 --     HOD = { x | TC x ⊆ OD }
 --  where TC x is a transitive clusure of x, i.e. Union of all elemnts of all subset of x.
 --  This is not possible because we don't have V yet. So we assumes HODs are bounded OD.
@@ -89,18 +89,18 @@
 
 open HOD
 
-record ODAxiom : Set (suc n) where      
+record ODAxiom : Set (suc n) where
  field
   -- HOD is isomorphic to Ordinal (by means of Goedel number)
-  & : HOD  → Ordinal 
-  * : Ordinal  → HOD  
+  & : HOD  → Ordinal
+  * : Ordinal  → HOD
   c<→o<  :  {x y : HOD  }   → def (od y) ( & x ) → & x o< & y
   ⊆→o≤   :  {y z : HOD  }   → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z)
   *iso   :  {x : HOD }      → * ( & x ) ≡ x
   &iso   :  {x : Ordinal }  → & ( * x ) ≡ x
   ==→o≡  :  {x y : HOD  }   → (od x == od y) → x ≡ y
-  sup-o  :  (A : HOD) → (     ( x : Ordinal ) → def (od A) x →  Ordinal ) →  Ordinal 
-  sup-o≤ :  (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x →  Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o≤  sup-o A ψ 
+  sup-o  :  (A : HOD) → (     ( x : Ordinal ) → def (od A) x →  Ordinal ) →  Ordinal
+  sup-o≤ :  (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x →  Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o≤  sup-o A ψ
 -- possible order restriction
   ho< : {x : HOD} → & x o< next (odmax x)
 
@@ -112,7 +112,7 @@
 --
 -- since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD.
 -- We can calculate the minimum using sup but it is tedius.
--- Only Select has non minimum odmax. 
+-- Only Select has non minimum odmax.
 -- We have the same problem on 'def' itself, but we leave it.
 
 odmaxmin : Set (suc n)
@@ -122,20 +122,14 @@
 ¬OD-order : ( & : OD  → Ordinal ) → ( * : Ordinal  → OD ) → ( { x y : OD  }  → def y ( & x ) → & x o< & y) → ⊥
 ¬OD-order & * c<→o< = o≤> <-osuc (c<→o< {Ords} OneObj )
 
--- Open supreme upper bound leads a contradition, so we use domain restriction on sup
-¬open-sup : ( sup-o : (Ordinal →  Ordinal ) → Ordinal) → ((ψ : Ordinal →  Ordinal ) → (x : Ordinal) → ψ x  o<  sup-o ψ ) → ⊥
-¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where
-   next-ord : Ordinal → Ordinal
-   next-ord x = osuc x
-
 -- Ordinal in OD ( and ZFSet ) Transitive Set
-Ord : ( a : Ordinal  ) → HOD 
+Ord : ( a : Ordinal  ) → HOD
 Ord  a = record { od = record { def = λ y → y o< a } ; odmax = a ; <odmax = lemma } where
    lemma :  {x : Ordinal} → x o< a → x o< a
    lemma {x} lt = lt
 
-od∅ : HOD  
-od∅  = Ord o∅ 
+od∅ : HOD
+od∅  = Ord o∅
 
 odef : HOD → Ordinal → Set n
 odef A x = def ( od A ) x
@@ -144,7 +138,7 @@
 _∋_  a x  = odef a ( & x )
 
 -- _c<_ : ( x a : HOD  ) → Set n
--- x c< a = a ∋ x 
+-- x c< a = a ∋ x
 
 d→∋ : ( a : HOD  ) { x : Ordinal} → odef a x → a ∋ (* x)
 d→∋ a lt = subst (λ k → odef a k ) (sym &iso) lt
@@ -169,11 +163,11 @@
 
 ==-iso : { x y : HOD  } → od (* (& x)) == od (* (& y))  →  od x == od y
 ==-iso  {x} {y} eq = record {
-      eq→ = λ {z} d →  lemma ( eq→  eq (subst (λ k → odef k z ) (sym *iso) d )) ; 
-      eq← = λ {z} d →  lemma ( eq←  eq (subst (λ k → odef k z ) (sym *iso) d )) } 
+      eq→ = λ {z} d →  lemma ( eq→  eq (subst (λ k → odef k z ) (sym *iso) d )) ;
+      eq← = λ {z} d →  lemma ( eq←  eq (subst (λ k → odef k z ) (sym *iso) d )) }
         where
            lemma : {x : HOD  } {z : Ordinal } → odef (* (& x)) z → odef x z
-           lemma {x} {z} d = subst (λ k → odef k z) (*iso) d 
+           lemma {x} {z} d = subst (λ k → odef k z) (*iso) d
 
 =-iso :  {x y : HOD  } → (od x == od y) ≡ (od (* (& x)) == od y)
 =-iso  {_} {y} = cong ( λ k → od k == od y ) (sym *iso)
@@ -192,7 +186,7 @@
 &≡&→≡ : { x y : HOD  } → & x ≡  & y →  x ≡ y
 &≡&→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) eq )
 
-o∅≡od∅ : * (o∅ ) ≡ od∅ 
+o∅≡od∅ : * (o∅ ) ≡ od∅
 o∅≡od∅  = ==→o≡ lemma where
      lemma0 :  {x : Ordinal} → odef (* o∅) x → odef od∅ x
      lemma0 {x} lt with c<→o< {* x} {* o∅} (subst (λ k → odef (* o∅) k ) (sym &iso) lt)
@@ -202,20 +196,20 @@
      lemma : od (* o∅) == od od∅
      lemma = record { eq→ = lemma0 ; eq← = lemma1 }
 
-ord-od∅ : & (od∅ ) ≡ o∅ 
+ord-od∅ : & (od∅ ) ≡ o∅
 ord-od∅  = sym ( subst (λ k → k ≡  & (od∅ ) ) &iso (cong ( λ k → & k ) o∅≡od∅ ) )
 
 ≡o∅→=od∅  : {x : HOD} → & x ≡ o∅ → od x == od od∅
 ≡o∅→=od∅ {x} eq = record { eq→ = λ {y} lt → ⊥-elim ( ¬x<0 {y} (subst₂ (λ j k → j o< k ) &iso eq ( c<→o< {* y} {x} (d→∋ x lt))))
-    ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )}  
+    ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )}
 
-=od∅→≡o∅  : {x : HOD} → od x == od od∅ → & x ≡ o∅ 
+=od∅→≡o∅  : {x : HOD} → od x == od od∅ → & x ≡ o∅
 =od∅→≡o∅ {x} eq = trans (cong (λ k → & k ) (==→o≡ {x} {od∅} eq)) ord-od∅
 
 ≡od∅→=od∅  : {x : HOD} → x ≡ od∅ → od x == od od∅
 ≡od∅→=od∅ {x} eq = ≡o∅→=od∅ (subst (λ k → & x  ≡ k ) ord-od∅ ( cong & eq ) )
 
-∅0 : record { def = λ x →  Lift n ⊥ } == od od∅  
+∅0 : record { def = λ x →  Lift n ⊥ } == od od∅
 eq→ ∅0 {w} (lift ())
 eq← ∅0 {w} lt = lift (¬x<0 lt)
 
@@ -241,8 +235,14 @@
 is-o∅ x | tri≈ ¬a b ¬c = yes b
 is-o∅ x | tri> ¬a ¬b c = no ¬b
 
+odef< : {b : Ordinal } { A : HOD } → odef A b → b o< & A
+odef< {b} {A} ab = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab))
+
+odef∧< : {A : HOD } {y : Ordinal} {n : Level } → {P : Set n} → odef A y ∧ P → y o< & A
+odef∧< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p )))
+
 -- the pair
-_,_ : HOD  → HOD  → HOD  
+_,_ : HOD  → HOD  → HOD
 x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = omax (& x)  (& y) ; <odmax = lemma }  where
     lemma : {t : Ordinal} → (t ≡ & x) ∨ (t ≡ & y) → t o< omax (& x) (& y)
     lemma {t} (case1 refl) = omax-x  _ _
@@ -258,15 +258,15 @@
 odmax<&  : { x y : HOD } → x ∋ y →  Set n
 odmax<& {x} {y} x∋y = odmax x o< & x
 
-in-codomain : (X : HOD  ) → ( ψ : HOD  → HOD  ) → OD 
+in-codomain : (X : HOD  ) → ( ψ : HOD  → HOD  ) → OD
 in-codomain  X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧  ( x ≡ & (ψ (* y )))))  }
 
-_∩_ : ( A B : HOD ) → HOD 
+_∩_ : ( A B : HOD ) → HOD
 A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x }
         ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))}
 
 record _⊆_ ( A B : HOD   ) : Set (suc n) where
-  field 
+  field
      incl : { x : HOD } → A ∋ x →  B ∋ x
 
 open _⊆_
@@ -275,7 +275,7 @@
 -- if we have & (x , x) ≡ osuc (& x),  ⊆→o≤ → c<→o<
 ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) )
    →  ({y z : HOD  }   → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) )
-   →   {x y : HOD  }   → def (od y) ( & x ) → & x o< & y 
+   →   {x y : HOD  }   → def (od y) ( & x ) → & x o< & y
 ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x with trio< (& x) (& y)
 ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri< a ¬b ¬c = a
 ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (peq {x}) (pair<y (subst (λ k → k ∋ x) (sym ( ==→o≡ {x} {y} (ord→== b))) y∋x )))
@@ -285,36 +285,64 @@
     lemma (case1 refl) = refl
     lemma (case2 refl) = refl
     y⊆x,x : {z : Ordinal} → def (od (x , x)) z → def (od y) z
-    y⊆x,x {z} lt = subst (λ k → def (od y) k ) (lemma lt) y∋x 
+    y⊆x,x {z} lt = subst (λ k → def (od y) k ) (lemma lt) y∋x
     lemma1 : osuc (& y) o< & (x , x)
-    lemma1 = subst (λ k → osuc (& y) o< k ) (sym (peq {x})) (osucc c ) 
+    lemma1 = subst (λ k → osuc (& y) o< k ) (sym (peq {x})) (osucc c )
 
 ε-induction : { ψ : HOD  → Set (suc n)}
    → ( {x : HOD } → ({ y : HOD } →  x ∋ y → ψ y ) → ψ x )
    → (x : HOD ) → ψ x
 ε-induction {ψ} ind x = subst (λ k → ψ k ) *iso (ε-induction-ord (osuc (& x)) <-osuc )  where
      induction : (ox : Ordinal) → ((oy : Ordinal) → oy o< ox → ψ (* oy)) → ψ (* ox)
-     induction ox prev = ind  ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso ))) 
+     induction ox prev = ind  ( λ {y} lt → subst (λ k → ψ k ) *iso (prev (& y) (o<-subst (c<→o< lt) refl &iso )))
      ε-induction-ord : (ox : Ordinal) { oy : Ordinal } → oy o< ox → ψ (* oy)
      ε-induction-ord ox {oy} lt = TransFinite {λ oy → ψ (* oy)} induction oy
 
-Select : (X : HOD  ) → ((x : HOD  ) → Set n ) → HOD 
+record OSUP (A x : Ordinal ) ( ψ : ( x : Ordinal ) → odef (* A) x →  Ordinal ) : Set n where
+   field
+      sup-o'  :   Ordinal
+      sup-o≤' :  {z : Ordinal } → z o< x → (lt : odef (* A) z ) → ψ z lt o≤  sup-o' 
+
+-- o<-sup :  ( A x : Ordinal) { ψ : ( x : Ordinal ) → odef (* A) x →  Ordinal } → OSUP A x ψ
+-- o<-sup A x {ψ} = ? where
+--   m00 : (x : Ordinal ) → OSUP A x ψ
+--   m00 x = Ordinals.inOrdinal.TransFinite0 O ind x where
+--      ind : (x : Ordinal) → ((z : Ordinal) → z o< x → OSUP A z ψ ) → OSUP A x ψ
+--      ind x prev  =  ? where
+--        if has prev , od01 is empty use prev (cannot be odef (* A) x)
+--                              not empty, take larger
+--           limit ordinal, take address of Union
+--
+--          od01 : HOD
+--          od01 = record { od = record { def = λ z → odef A z ∧ ( z ≡ & x ) } ; odmax = & A ; <odmax = odef∧<  }
+--          m01 : OSUP A x ψ 
+--          m01 with is-o∅ (& od01 )
+--          ... | case1 t=0 = record { sup-o' = prevjjk
+--          ... | case2 t>0 = ?
+
+-- Open supreme upper bound leads a contradition, so we use domain restriction on sup
+¬open-sup : ( sup-o : (Ordinal →  Ordinal ) → Ordinal) → ((ψ : Ordinal →  Ordinal ) → (x : Ordinal) → ψ x  o<  sup-o ψ ) → ⊥
+¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where
+   next-ord : Ordinal → Ordinal
+   next-ord x = osuc x
+
+Select : (X : HOD  ) → ((x : HOD  ) → Set n ) → HOD
 Select X ψ = record { od = record { def = λ x →  ( odef X x ∧ ψ ( * x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) }
 
-Replace : HOD  → (HOD  → HOD) → HOD 
+Replace : HOD  → (HOD  → HOD) → HOD
 Replace X ψ = record { od = record { def = λ x → (x o≤ sup-o X (λ y X∋y → & (ψ (* y)))) ∧ def (in-codomain X ψ) x }
-    ; odmax = rmax ; <odmax = rmax<} where 
+    ; odmax = rmax ; <odmax = rmax<} where
         rmax : Ordinal
         rmax = osuc ( sup-o X (λ y X∋y → & (ψ (* y))))
         rmax< :  {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax
         rmax< lt = proj1 lt
 
 --
--- If we have LEM, Replace' is equivalent to Replace 
+-- If we have LEM, Replace' is equivalent to Replace
 --
-in-codomain' : (X : HOD  ) → ((x : HOD) → X ∋ x → HOD) → OD 
+in-codomain' : (X : HOD  ) → ((x : HOD) → X ∋ x → HOD) → OD
 in-codomain'  X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧  ((lt : odef X y) →  x ≡ & (ψ (* y ) (d→∋ X lt) ))))  }
-Replace' : (X : HOD)  → ((x : HOD) → X ∋ x → HOD) → HOD 
+Replace' : (X : HOD)  → ((x : HOD) → X ∋ x → HOD) → HOD
 Replace' X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y) (d→∋ X X∋y) ))) ∧ def (in-codomain' X ψ) x }
       ; odmax = rmax ; <odmax = rmax< } where
         rmax : Ordinal
@@ -322,7 +350,7 @@
         rmax< :  {y : Ordinal} → (y o< rmax) ∧ def (in-codomain' X ψ) y → y o< rmax
         rmax< lt = proj1 lt
 
-Union : HOD  → HOD   
+Union : HOD  → HOD
 Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x)))  }
     ; odmax = osuc (& U) ; <odmax = umax< } where
         umax< :  {y : Ordinal} → ¬ ((u : Ordinal) → ¬ def (od U) u ∧ def (od (* u)) y) → y o< osuc (& U)
@@ -330,7 +358,7 @@
             lemma0 : {x : Ordinal} → def (od (* x)) y → y o< x
             lemma0 {x} x<y = subst₂ (λ j k → j o< k ) &iso  &iso (c<→o< (d→∋ (* x) x<y ))
             lemma2 : {x : Ordinal} → def (od U) x → x o< & U
-            lemma2 {x} x<U = subst (λ k → k o< & U ) &iso (c<→o< (d→∋ U x<U)) 
+            lemma2 {x} x<U = subst (λ k → k o< & U ) &iso (c<→o< (d→∋ U x<U))
             lemma1 : {x : Ordinal} → def (od U) x ∧ def (od (* x)) y → ¬ (& U o< y)
             lemma1 {x} lt u<y = o<> u<y (ordtrans (lemma0 (proj2 lt)) (lemma2 (proj1 lt)) )
             lemma : ¬ ((& U) o< y ) → y o< osuc (& U)
@@ -341,10 +369,10 @@
 _∈_ : ( A B : HOD  ) → Set n
 A ∈ B = B ∋ A
 
-OPwr :  (A :  HOD ) → HOD 
+OPwr :  (A :  HOD ) → HOD
 OPwr  A = Ord ( osuc ( sup-o (Ord (osuc (& A))) ( λ x A∋x → & ( A ∩ (* x)) ) ) )
 
-Power : HOD  → HOD 
+Power : HOD  → HOD
 Power A = Replace (OPwr (Ord (& A))) ( λ x → A ∩ x )
 -- {_} : ZFSet → ZFSet
 -- { x } = ( x ,  x )     -- better to use (x , x) directly
@@ -364,25 +392,25 @@
 
 -- ω can be diverged in our case, since we have no restriction on the corresponding ordinal of a pair.
 -- We simply assumes infinite-d y has a maximum.
--- 
+--
 -- This means that many of OD may not be HODs because of the & mapping divergence.
 -- We should have some axioms to prevent this such as & x o< next (odmax x).
--- 
+--
 -- postulate
 --     ωmax : Ordinal
 --     <ωmax : {y : Ordinal} → infinite-d y → y o< ωmax
--- 
--- infinite : HOD 
--- infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ωmax ; <odmax = <ωmax } 
+--
+-- infinite : HOD
+-- infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ωmax ; <odmax = <ωmax }
 
-infinite : HOD 
+infinite : HOD
 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma }  where
     u : (y : Ordinal ) → HOD
     u y = Union (* y , (* y , * y))
     --   next< : {x y z : Ordinal} → x o< next z  → y o< next x → y o< next z
     lemma8 : {y : Ordinal} → & (* y , * y) o< next (odmax (* y , * y))
     lemma8 = ho<
-    ---           (x,y) < next (omax x y) < next (osuc y) = next y 
+    ---           (x,y) < next (omax x y) < next (osuc y) = next y
     lemmaa : {x y : HOD} → & x o< & y → & (x , y) o< next (& y)
     lemmaa {x} {y} x<y = subst (λ k → & (x , y) o< k ) (sym nexto≡) (subst (λ k → & (x , y) o< next k ) (sym (omax< _ _ x<y)) ho< )
     lemma81 : {y : Ordinal} → & (* y , * y) o< next (& (* y))
@@ -399,24 +427,24 @@
     lemma (isuc {y} x) = next< (lemma x) (next< (subst (λ k → & (* y , (* y , * y)) o< next k) &iso lemma71 ) (nexto=n lemma1))
 
 empty : (x : HOD  ) → ¬  (od∅ ∋ x)
-empty x = ¬x<0 
+empty x = ¬x<0
 
 _=h=_ : (x y : HOD) → Set n
 x =h= y  = od x == od y
 
-pair→ : ( x y t : HOD  ) →  (x , y)  ∋ t  → ( t =h= x ) ∨ ( t =h= y ) 
+pair→ : ( x y t : HOD  ) →  (x , y)  ∋ t  → ( t =h= x ) ∨ ( t =h= y )
 pair→ x y t (case1 t≡x ) = case1 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡x ))
 pair→ x y t (case2 t≡y ) = case2 (subst₂ (λ j k → j =h= k ) *iso *iso (o≡→== t≡y ))
 
-pair← : ( x y t : HOD  ) → ( t =h= x ) ∨ ( t =h= y ) →  (x , y)  ∋ t  
+pair← : ( x y t : HOD  ) → ( t =h= x ) ∨ ( t =h= y ) →  (x , y)  ∋ t
 pair← x y t (case1 t=h=x) = case1 (cong (λ k → & k ) (==→o≡ t=h=x))
 pair← x y t (case2 t=h=y) = case2 (cong (λ k → & k ) (==→o≡ t=h=y))
 
-o<→c< :  {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y) 
-o<→c< lt = record { incl = λ z → ordtrans z lt }  
+o<→c< :  {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y)
+o<→c< lt = record { incl = λ z → ordtrans z lt }
 
 ⊆→o< :  {x y : Ordinal } → (Ord x) ⊆ (Ord y) →  x o< osuc y
-⊆→o< {x} {y}  lt with trio< x y 
+⊆→o< {x} {y}  lt with trio< x y
 ⊆→o< {x} {y}  lt | tri< a ¬b ¬c = ordtrans a <-osuc
 ⊆→o< {x} {y}  lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc
 ⊆→o< {x} {y}  lt | tri> ¬a ¬b c with (incl lt)  (o<-subst c (sym &iso) refl )
@@ -430,14 +458,14 @@
   ,  ( λ select → ⟪ proj1 select  , ψiso {ψ} (proj2 select) *iso  ⟫ )

 
-selection-in-domain : {ψ : HOD → Set n} {X y : HOD} → Select X ψ ∋ y → X ∋ y 
+selection-in-domain : {ψ : HOD → Set n} {X y : HOD} → Select X ψ ∋ y → X ∋ y
 selection-in-domain {ψ} {X} {y} lt = proj1 ((proj2 (selection {ψ} {X} )) lt)
 
 sup-c≤ :  (ψ : HOD → HOD) → {X x : HOD} → X ∋ x  → & (ψ x) o≤ (sup-o X (λ y X∋y → & (ψ (* y))))
 sup-c≤ ψ {X} {x} lt = subst (λ k → & (ψ k) o< _ ) *iso (sup-o≤ X lt )
 
 replacement← : {ψ : HOD → HOD} (X x : HOD) →  X ∋ x → Replace X ψ ∋ ψ x
-replacement← {ψ} X x lt = ⟪ sup-c≤ ψ {X} {x} lt , lemma ⟫ where 
+replacement← {ψ} X x lt = ⟪ sup-c≤ ψ {X} {x} lt , lemma ⟫ where
     lemma : def (in-codomain X ψ) (& (ψ x))
     lemma not = ⊥-elim ( not ( & x ) ⟪ lt , cong (λ k → & (ψ k)) (sym *iso)⟫ )
 replacement→ : {ψ : HOD → HOD} (X x : HOD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y))
@@ -445,7 +473,7 @@
     lemma2 :  ¬ ((y : Ordinal) → ¬ odef X y ∧ ((& x) ≡ & (ψ (* y))))
             → ¬ ((y : Ordinal) → ¬ odef X y ∧ (* (& x) =h= ψ (* y)))
     lemma2 not not2  = not ( λ y d →  not2 y ⟪ proj1 d , lemma3 (proj2 d)⟫) where
-        lemma3 : {y : Ordinal } → (& x ≡ & (ψ (*  y))) → (* (& x) =h= ψ (* y))  
+        lemma3 : {y : Ordinal } → (& x ≡ & (ψ (*  y))) → (* (& x) =h= ψ (* y))
         lemma3 {y} eq = subst (λ k  → * (& x) =h= k ) *iso (o≡→== eq )
     lemma :  ( (y : HOD) → ¬ (x =h= ψ y)) → ( (y : Ordinal) → ¬ odef X y ∧ (* (& x) =h= ψ (* y)) )
     lemma not y not2 = not (* y) (subst (λ k → k =h= ψ (* y)) *iso  ( proj2 not2 ))
@@ -462,29 +490,29 @@
 ∩-≡ {a} {b} inc = record {
    eq→ = λ {x} x<a → ⟪ (subst (λ k → odef b k ) &iso (inc (d→∋ a x<a))) , x<a  ⟫ ;
    eq← = λ {x} x<a∩b → proj2 x<a∩b }
--- 
+--
 -- Transitive Set case
 -- we have t ∋ x → Ord a ∋ x means t is a subset of Ord a, that is (Ord a) ∩ t =h= t
 -- OPwr (Ord a) is a sup of (Ord a) ∩ t, so OPwr (Ord a) ∋ t
--- OPwr  A = Ord ( sup-o ( λ x → & ( A ∩ (* x )) ) )   
--- 
+-- OPwr  A = Ord ( sup-o ( λ x → & ( A ∩ (* x )) ) )
+--
 ord-power← : (a : Ordinal ) (t : HOD) → ({x : HOD} → (t ∋ x → (Ord a) ∋ x)) → OPwr (Ord a) ∋ t
-ord-power← a t t→A  = subst (λ k → odef (OPwr (Ord a)) k ) (lemma1 lemma-eq) lemma where 
+ord-power← a t t→A  = subst (λ k → odef (OPwr (Ord a)) k ) (lemma1 lemma-eq) lemma where
     lemma-eq :  ((Ord a) ∩ t) =h= t
-    eq→ lemma-eq {z} w = proj2 w 
-    eq← lemma-eq {z} w = ⟪ subst (λ k → odef (Ord a) k ) &iso ( t→A (d→∋ t w)) , w ⟫ 
+    eq→ lemma-eq {z} w = proj2 w
+    eq← lemma-eq {z} w = ⟪ subst (λ k → odef (Ord a) k ) &iso ( t→A (d→∋ t w)) , w ⟫
     lemma1 :  {a : Ordinal } { t : HOD }
         → (eq : ((Ord a) ∩ t) =h= t)  → & ((Ord a) ∩ (* (& t))) ≡ & t
     lemma1  {a} {t} eq = subst (λ k → & ((Ord a) ∩ k) ≡ & t ) (sym *iso) (cong (λ k → & k ) (==→o≡ eq ))
     lemma2 : (& t) o< (osuc (& (Ord a)))
-    lemma2 = ⊆→o≤  {t} {Ord a} (λ {x} x<t → subst (λ k → def (od (Ord a)) k) &iso (t→A (d→∋ t x<t))) 
+    lemma2 = ⊆→o≤  {t} {Ord a} (λ {x} x<t → subst (λ k → def (od (Ord a)) k) &iso (t→A (d→∋ t x<t)))
     lemma :  & ((Ord a) ∩ (* (& t)) ) o≤ sup-o (Ord (osuc (& (Ord a)))) (λ x lt → & ((Ord a) ∩ (* x)))
     lemma = sup-o≤ _ lemma2
 
--- 
+--
 -- Every set in HOD is a subset of Ordinals, so make OPwr (Ord (& A)) first
 -- then replace of all elements of the Power set by A ∩ y
--- 
+--
 -- Power A = Replace (OPwr (Ord (& A))) ( λ y → A ∩ y )
 
 -- we have oly double negation form because of the replacement axiom
@@ -502,7 +530,7 @@
     lemma5 {y} eq not = (lemma3 (* y) eq) not
 
 power← :  (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t
-power← A t t→A = ⟪ lemma1 , lemma2 ⟫ where 
+power← A t t→A = ⟪ lemma1 , lemma2 ⟫ where
     a = & A
     lemma0 : {x : HOD} → t ∋ x → Ord a ∋ x
     lemma0 {x} t∋x = c<→o< (t→A t∋x)
@@ -519,17 +547,17 @@
     sup1 : Ordinal
     sup1 =  sup-o (Ord (osuc (& (Ord (& A))))) (λ x A∋x → & ((Ord (& A)) ∩ (* x)))
     lemma9 : def (od (Ord (Ordinals.osuc O (& (Ord (& A)))))) (& (Ord (& A)))
-    lemma9 = <-osuc 
+    lemma9 = <-osuc
     lemmab : & ((Ord (& A)) ∩ (* (& (Ord (& A) )))) o≤ sup1
-    lemmab = sup-o≤ (Ord (osuc (& (Ord (& A))))) lemma9 
+    lemmab = sup-o≤ (Ord (osuc (& (Ord (& A))))) lemma9
     lemmad : Ord (osuc (& A)) ∋ t
-    lemmad = ⊆→o≤ (λ {x} lt → subst (λ k → def (od A) k ) &iso (t→A (d→∋ t lt))) 
+    lemmad = ⊆→o≤ (λ {x} lt → subst (λ k → def (od A) k ) &iso (t→A (d→∋ t lt)))
     lemmac : ((Ord (& A)) ∩  (* (& (Ord (& A) )))) =h= Ord (& A)
     lemmac = record { eq→ = lemmaf ; eq← = lemmag } where
         lemmaf : {x : Ordinal} → def (od ((Ord (& A)) ∩  (* (& (Ord (& A)))))) x → def (od (Ord (& A))) x
         lemmaf {x} lt = proj1 lt
         lemmag :  {x : Ordinal} → def (od (Ord (& A))) x → def (od ((Ord (& A)) ∩ (* (& (Ord (& A)))))) x
-        lemmag {x} lt = ⟪ lt , subst (λ k → def (od k) x) (sym *iso) lt ⟫ 
+        lemmag {x} lt = ⟪ lt , subst (λ k → def (od k) x) (sym *iso) lt ⟫
     lemmae : & ((Ord (& A)) ∩ (* (& (Ord (& A))))) ≡ & (Ord (& A))
     lemmae = cong (λ k → & k ) ( ==→o≡ lemmac)
     lemma7 : def (od (OPwr (Ord (& A)))) (& t)
@@ -540,18 +568,18 @@
         lemmah {x} lt = subst (λ k → def (od k) x ) (sym *iso) (subst (λ k → k o< (& t))
             &iso
             (c<→o< (subst₂ (λ j k → def (od j)  k) *iso (sym &iso) lt )))
-    lemma7 | case1 eq | case1 eq1 = subst (λ k → k o≤ sup1) (trans lemmae lemmai) lemmab where 
+    lemma7 | case1 eq | case1 eq1 = subst (λ k → k o≤ sup1) (trans lemmae lemmai) lemmab where
         lemmai : & (Ord (& A)) ≡ & t
         lemmai = let open ≡-Reasoning in begin
-                & (Ord (& A)) 
+                & (Ord (& A))
             ≡⟨ sym (cong (λ k → & (Ord k)) eq) ⟩
-                & (Ord (& t)) 
+                & (Ord (& t))
             ≡⟨ sym &iso ⟩
                 & (* (& (Ord (& t))))
             ≡⟨ sym eq1 ⟩
                 & (* (& t))
             ≡⟨ &iso ⟩
-                & t 
+                & t

     lemma7 | case1 eq | case2 lt = ordtrans lemmaj (subst (λ k → k o≤ sup1) lemmae lemmab ) where
         lemmak : & (* (& (Ord (& t)))) ≡ & (Ord (& A))
@@ -563,26 +591,26 @@
                 & (Ord (& A))

         lemmaj : & t o< & (Ord (& A))
-        lemmaj = subst₂ (λ j k → j o< k ) &iso lemmak lt 
+        lemmaj = subst₂ (λ j k → j o< k ) &iso lemmak lt
     lemma1 : & t o≤ sup-o (OPwr (Ord (& A))) (λ x lt → & (A ∩ (* x)))
     lemma1 = subst (λ k → & k o≤ sup-o (OPwr (Ord (& A)))  (λ x lt → & (A ∩ (* x))))
         lemma4 (sup-o≤ (OPwr (Ord (& A))) lemma7 )
     lemma2 :  def (in-codomain (OPwr (Ord (& A))) (_∩_ A)) (& t)
     lemma2 not = ⊥-elim ( not (& t) ⟪ lemma3 , lemma6 ⟫ ) where
-        lemma6 : & t ≡ & (A ∩ * (& t)) 
+        lemma6 : & t ≡ & (A ∩ * (& t))
         lemma6 = cong ( λ k → & k ) (==→o≡ (subst (λ k → t =h= (A ∩ k)) (sym *iso) ( ∩-≡ {t} {A} t→A  )))
 
 
 extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A =h= B
-eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso  {A} {B} (sym &iso) (proj1 (eq (* x))) d  
-eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso  {B} {A} (sym &iso) (proj2 (eq (* x))) d  
+eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso  {A} {B} (sym &iso) (proj1 (eq (* x))) d
+eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso  {B} {A} (sym &iso) (proj2 (eq (* x))) d
 
 extensionality : {A B w : HOD  } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B)
 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d
-proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d 
+proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d
 
-infinity∅ : infinite  ∋ od∅ 
-infinity∅ = subst (λ k → odef infinite k ) lemma iφ where 
+infinity∅ : infinite  ∋ od∅
+infinity∅ = subst (λ k → odef infinite k ) lemma iφ where
     lemma : o∅ ≡ & od∅
     lemma =  let open ≡-Reasoning in begin
         o∅
@@ -595,7 +623,7 @@
 infinity x lt = subst (λ k → odef infinite k ) lemma (isuc {& x} lt) where
     lemma :  & (Union (* (& x) , (* (& x) , * (& x))))
         ≡ & (Union (x , (x , x)))
-    lemma = cong (λ k → & (Union ( k , ( k , k ) ))) *iso 
+    lemma = cong (λ k → & (Union ( k , ( k , k ) ))) *iso
 
 isZF : IsZF (HOD )  _∋_  _=h=_ od∅ _,_ Union Power Select Replace infinite
 isZF = record {
@@ -605,22 +633,22 @@
     ;   union→ = union→
     ;   union← = union←
     ;   empty = empty
-    ;   power→ = power→  
-    ;   power← = power← 
-    ;   extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} 
+    ;   power→ = power→
+    ;   power← = power←
+    ;   extensionality = λ {A} {B} {w} → extensionality {A} {B} {w}
     ;   ε-induction = ε-induction
     ;   infinity∅ = infinity∅
     ;   infinity = infinity
     ;   selection = λ {X} {ψ} {y} → selection {X} {ψ} {y}
     ;   replacement← = replacement←
     ;   replacement→ = λ {ψ} → replacement→ {ψ}
-    } 
+    }
 
-HOD→ZF : ZF  
-HOD→ZF   = record { 
-    ZFSet = HOD 
-    ; _∋_ = _∋_ 
-    ; _≈_ = _=h=_ 
+HOD→ZF : ZF
+HOD→ZF   = record {
+    ZFSet = HOD
+    ; _∋_ = _∋_
+    ; _≈_ = _=h=_
     ; ∅  = od∅
     ; _,_ = _,_
     ; Union = Union
@@ -628,7 +656,7 @@
     ; Select = Select
     ; Replace = Replace
     ; infinite = infinite
-    ; isZF = isZF 
- } 
-  
+    ; isZF = isZF
+ }
 
+
--- a/src/zorn.agda	Mon Dec 19 09:50:51 2022 +0900
+++ b/src/zorn.agda	Tue Dec 20 11:20:52 2022 +0900
@@ -4,7 +4,7 @@
 open import Relation.Binary
 open import Relation.Binary.Core
 open import Relation.Binary.PropositionalEquality
-import OD
+import OD hiding ( _⊆_ )
 module zorn {n : Level } (O : Ordinals {n}) (_<_ : (x y : OD.HOD O ) → Set n ) (PO : IsStrictPartialOrder _≡_ _<_ ) where
 
 --
@@ -14,7 +14,7 @@
 --     → Maximal A
 --
 
-open import zf
+open import zf -- hiding ( _⊆_ )
 open import logic
 -- open import partfunc {n} O
 
@@ -90,10 +90,12 @@
 ptrans =  IsStrictPartialOrder.trans PO
 
 open _==_
-open _⊆_
+-- open _⊆_ -- we use different definition
 
+-- We cannot prove this without Well foundedness of A
+--
 -- <-TransFinite : {A x : HOD} → {P : HOD → Set n} → x ∈ A
---     → ({x : HOD} → A ∋ x →  ({y : HOD} → A ∋  y → y < x → P y ) → P x) → P x
+--     → ({y : HOD} → A ∋  y → y < x → P y ) → P x
 -- <-TransFinite = ?
 
 --
@@ -216,16 +218,11 @@
 IsTotalOrderSet : ( A : HOD ) → Set (Level.suc n)
 IsTotalOrderSet A = {a b : HOD} → odef A (& a) → odef A (& b)  → Tri (a < b) (a ≡ b) (b < a )
 
-⊆-IsTotalOrderSet : { A B : HOD } →  B ⊆ A  → IsTotalOrderSet A → IsTotalOrderSet B
-⊆-IsTotalOrderSet {A} {B} B⊆A T  ax ay = T (incl B⊆A ax) (incl B⊆A ay)
+_⊆_ : ( A B : HOD ) → Set n
+_⊆_ A B = {x : Ordinal } → odef A x → odef B x
 
-_⊆'_ : ( A B : HOD ) → Set n
-_⊆'_ A B = {x : Ordinal } → odef A x → odef B x
-
---
--- inductive masum tree from x
--- tree structure
---
+⊆-IsTotalOrderSet : { A B : HOD } →  B ⊆ A  → IsTotalOrderSet A → IsTotalOrderSet B
+⊆-IsTotalOrderSet {A} {B} B⊆A T  ax ay = T (B⊆A ax) (B⊆A ay)
 
 record HasPrev (A B : HOD) ( f : Ordinal → Ordinal ) (x : Ordinal )   : Set n where
    field
@@ -247,6 +244,7 @@
    x≤sup = IsSUP.x≤sup isSUP
 
 --
+--   Our Proof strategy of the Zorn Lemma  
 --
 --         f (f ( ... (supf y))) f (f ( ... (supf z1)))
 --        /          |         /             |
@@ -339,7 +337,7 @@
 
    chain : HOD
    chain = UnionCF A f ay supf z
-   chain⊆A : chain ⊆' A
+   chain⊆A : chain ⊆ A
    chain⊆A = λ lt → proj1 lt
 
    chain∋init : {x : Ordinal } → odef (UnionCF A f ay supf x) y
@@ -382,14 +380,6 @@
    initial {x} x≤z ⟪ aa , ch-init fc ⟫ = s≤fc y f mf fc
    initial {x} x≤z ⟪ aa , ch-is-sup u u<x is-sup fc ⟫ = ≤-ftrans (fcy<sup (ordtrans u<x x≤z) (init ay refl)) (s≤fc _ f mf fc)
 
-   supfeq : {a b : Ordinal } → a o≤ z →  b o≤ z → UnionCF A f ay supf a ≡ UnionCF A f ay supf b → supf a ≡ supf b
-   supfeq {a} {b} a≤z b≤z ua=ub with trio< (supf a) (supf b)
-   ... | tri< sa<sb ¬b ¬c = ⊥-elim ( o≤> (
-             IsMinSUP.minsup (is-minsup b≤z) asupf (λ {z} uzb → IsMinSUP.x≤sup (is-minsup a≤z) (subst (λ k → odef k z) (sym ua=ub) uzb)) ) sa<sb )
-   ... | tri≈ ¬a b ¬c = b
-   ... | tri> ¬a ¬b sb<sa = ⊥-elim ( o≤> (
-             IsMinSUP.minsup (is-minsup a≤z) asupf (λ {z} uza → IsMinSUP.x≤sup (is-minsup b≤z) (subst (λ k → odef k z) ua=ub uza)) ) sb<sa )
-
    sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z
        → IsSUP A (UnionCF A f ay supf b) b  → supf b ≡ b
    sup=u {b} ab b≤z is-sup = z50 where
@@ -403,6 +393,14 @@
            ... | tri≈ ¬a b ¬c = b
            ... | tri> ¬a ¬b b<sb = ⊥-elim ( o≤> z48 b<sb )
 
+   supfeq : {a b : Ordinal } → a o≤ z →  b o≤ z → UnionCF A f ay supf a ≡ UnionCF A f ay supf b → supf a ≡ supf b
+   supfeq {a} {b} a≤z b≤z ua=ub with trio< (supf a) (supf b)
+   ... | tri< sa<sb ¬b ¬c = ⊥-elim ( o≤> (
+             IsMinSUP.minsup (is-minsup b≤z) asupf (λ {z} uzb → IsMinSUP.x≤sup (is-minsup a≤z) (subst (λ k → odef k z) (sym ua=ub) uzb)) ) sa<sb )
+   ... | tri≈ ¬a b ¬c = b
+   ... | tri> ¬a ¬b sb<sa = ⊥-elim ( o≤> (
+             IsMinSUP.minsup (is-minsup a≤z) asupf (λ {z} uza → IsMinSUP.x≤sup (is-minsup b≤z) (subst (λ k → odef k z) ua=ub uza)) ) sb<sa )
+
    union-max : {a b : Ordinal } → b o≤ supf a → b o≤ z → supf a o< supf b → UnionCF A f ay supf a ≡ UnionCF A f ay supf b
    union-max {a} {b} b≤sa b≤z sa<sb = ==→o≡ record { eq→ = z47 ; eq← = z48 } where
           z47 : {w : Ordinal } → odef (UnionCF A f ay supf a ) w → odef ( UnionCF A f ay supf b ) w
@@ -553,7 +551,7 @@
 
 Zorn-lemma : { A : HOD }
     → o∅ o< & A
-    → ( ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → SUP A B   ) -- SUP condition
+    → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → SUP A B   ) -- SUP condition
     → Maximal A
 Zorn-lemma {A}  0<A supP = zorn00 where
      <-irr0 : {a b : HOD} → A ∋ a → A ∋ b  → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
@@ -585,7 +583,7 @@
      --
      -- we have minsup using LEM, this is similar to the proof of the axiom of choice
      --
-     minsupP :  ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → MinSUP A B
+     minsupP :  ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → MinSUP A B
      minsupP B B⊆A total = m02 where
          xsup : (sup : Ordinal ) → Set n
          xsup sup = {w : Ordinal } → odef B w → (w ≡ sup ) ∨ (w << sup )
@@ -835,7 +833,7 @@
                lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
           ptotal (case2 a) (case2 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (fcn-cmp (supf0 px) f mf (proj1 a) (proj1 b))
 
-          pcha : pchainpx ⊆' A
+          pcha : pchainpx ⊆ A
           pcha (case1 lt) = proj1 lt
           pcha (case2 fc) = A∋fc _ f mf (proj1 fc)
 
@@ -1175,23 +1173,9 @@
            uz03 : ZChain.supf (pzc (ob<x lim ia<x)) ia o≤ ia
            uz03 = sa<x
 
-      chain⊆pchainU : {z w : Ordinal } → (oz<x : osuc z o< x) → odef (ZChain.chain (pzc oz<x)) w → odef pchainU w
-      chain⊆pchainU {z} {w} oz<x ⟪ aw , ch-init fc ⟫ = ⟪ aw , ic-init fc ⟫
-      chain⊆pchainU {z} {w} oz<x ⟪ aw , ch-is-sup u u<oz su=u fc ⟫
-         = ⟪ aw , ic-isup u u<x (o≤-refl0 su≡u) (subst (λ  k → FClosure A f k w ) su=su fc) ⟫ where
-             u<x : u o< x
-             u<x = ordtrans u<oz oz<x
-             su=su : ZChain.supf (pzc oz<x) u ≡ supfz u<x
-             su=su = sym ( zeq _ _  (osucc u<oz) (o<→≤ <-osuc) )
-             su≡u :  supfz u<x ≡ u
-             su≡u = begin
-                ZChain.supf (pzc (ob<x lim u<x )) u ≡⟨ sym su=su ⟩
-                ZChain.supf (pzc oz<x) u  ≡⟨ su=u ⟩
-                u ∎ where open ≡-Reasoning
-
-      chain⊆pchainU1 : {z w : Ordinal } → (z<x : z o< x) → odef (UnionCF A f ay (ZChain.supf (pzc (ob<x lim z<x))) z) w → odef pchainU w
-      chain⊆pchainU1 {z} {w} z<x ⟪ aw , ch-init fc ⟫ = ⟪ aw , ic-init fc ⟫
-      chain⊆pchainU1 {z} {w} z<x ⟪ aw , ch-is-sup u u<oz su=u fc ⟫
+      chain⊆pchainU : {z w : Ordinal } → (z<x : z o< x) → odef (UnionCF A f ay (ZChain.supf (pzc (ob<x lim z<x))) z) w → odef pchainU w
+      chain⊆pchainU {z} {w} z<x ⟪ aw , ch-init fc ⟫ = ⟪ aw , ic-init fc ⟫
+      chain⊆pchainU {z} {w} z<x ⟪ aw , ch-is-sup u u<oz su=u fc ⟫
          = ⟪ aw , ic-isup u u<x (o≤-refl0 su≡u) (subst (λ  k → FClosure A f k w ) su=su fc) ⟫ where
              u<x : u o< x
              u<x = ordtrans u<oz z<x
@@ -1203,20 +1187,6 @@
                 ZChain.supf (pzc (ob<x lim z<x)) u  ≡⟨ su=u ⟩
                 u ∎ where open ≡-Reasoning
 
-      ichain-inject : {a b : Ordinal } {ia : IChain ay supfz a } {ib : IChain ay supfz b }
-        → ZChain.supf (pzc (pic<x ia)) (IChain-i ia) o< ZChain.supf (pzc (pic<x ib)) (IChain-i ib)
-        → IChain-i ia o< IChain-i ib
-      ichain-inject {a} {b} {ia} {ib} sa<sb = uz11 where
-             uz11 : IChain-i ia o< IChain-i ib
-             uz11 with trio< (IChain-i ia ) (IChain-i ib)
-             ... | tri< a ¬b ¬c = a
-             ... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (trans (zeq _ _ (o≤-refl0 (cong osuc b)) (o<→≤ <-osuc) )
-                 ( cong (ZChain.supf (pzc (pic<x ib))) b )) sa<sb )
-             ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ( begin
-                 ZChain.supf (pzc (pic<x ib)) (IChain-i ib)  ≡⟨ zeq _ _ (o<→≤ (osucc c)) (o<→≤ <-osuc)  ⟩
-                 ZChain.supf (pzc (pic<x ia)) (IChain-i ib)  ≤⟨ ZChain.supf-mono (pzc (pic<x ia)) (o<→≤ c) ⟩
-                 ZChain.supf (pzc (pic<x ia)) (IChain-i ia)  ∎ ) sa<sb ) where open o≤-Reasoning O
-
       IC⊆ : {a b : Ordinal } (ia : IChain ay supfz a ) (ib : IChain ay supfz b )
           → IChain-i ia o< IChain-i ib → odef (ZChain.chain (pzc (pic<x ib))) a
       IC⊆ {a} {b} (ic-init fc ) ib ia<ib = ⟪ A∋fc _ f mf fc , ch-init fc ⟫
@@ -1302,7 +1272,7 @@
            lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
       ptotalS (case2 a) (case2 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (fcn-cmp spu0 f mf (proj1 a) (proj1 b))
 
-      S⊆A : pchainS ⊆' A
+      S⊆A : pchainS ⊆ A
       S⊆A (case1 lt) = proj1 lt
       S⊆A (case2 fc) = A∋fc _ f mf (proj1 fc)
 
@@ -1368,12 +1338,12 @@
                zc01 with osuc-≡< (subst (λ k → z o≤ k) b z≤y)
                ... | case1 z=x = o≤-refl0 (sf1=spu (sym z=x))
                ... | case2 z<x = subst (λ k → k o≤ spu ) (sym (sf1=sf z<x)) ( IsMinSUP.minsup (ZChain.is-minsup (pzc (ob<x lim z<x)) (o<→≤ <-osuc) )
-                 (MinSUP.as usup) (λ uw → MinSUP.x≤sup usup (chain⊆pchainU1 z<x uw)) )
+                 (MinSUP.as usup) (λ uw → MinSUP.x≤sup usup (chain⊆pchainU z<x uw)) )
           ... | tri> ¬a ¬b c = zc01 where  -- supf1 z o≤ sps
                zc01 : supf1 z o≤ sps
                zc01 with trio< z x
                ... | tri< z<x ¬b ¬c = IsMinSUP.minsup (ZChain.is-minsup (pzc (ob<x lim z<x)) (o<→≤ <-osuc) )
-                 (MinSUP.as ssup) (λ uw → MinSUP.x≤sup ssup (case1 (chain⊆pchainU1 z<x uw)) )
+                 (MinSUP.as ssup) (λ uw → MinSUP.x≤sup ssup (case1 (chain⊆pchainU z<x uw)) )
                ... | tri≈ ¬a z=x ¬c = MinSUP.minsup usup (MinSUP.as ssup) (λ uw → MinSUP.x≤sup ssup (case1 uw) )
                ... | tri> ¬a ¬b c = o≤-refl -- (sf1=sps c)
 
@@ -1422,7 +1392,6 @@
                        ⟪ az , ch-is-sup u u<b (trans (s1=0 u<b) su=u) (subst (λ k → FClosure A f k w) (sym (s1=0 u<b)) fc) ⟫
 
 
-
           cfcs :  {a b w : Ordinal } → a o< b → b o≤ x →  supf1 a o< b → FClosure A f (supf1 a) w → odef (UnionCF A f ay supf1 b) w
           cfcs {a} {b} {w} a<b b≤x sa<b fc with osuc-≡< b≤x
           ... | case1 b=x with trio< a x
@@ -1509,7 +1478,7 @@
                    z70 : odef (UnionCF A f ay supf1 z) (supf1 spu)
                    z70 = cfcs spu<x o≤-refl ssp<x (init asupf refl )
                    z73 : IsSUP A (UnionCF A f ay (ZChain.supf (pzc (ob<x lim spu<x))) spu) spu
-                   z73 = record { ax = MinSUP.as usup ; x≤sup = λ uw → MinSUP.x≤sup usup (chain⊆pchainU1 spu<x uw ) }
+                   z73 = record { ax = MinSUP.as usup ; x≤sup = λ uw → MinSUP.x≤sup usup (chain⊆pchainU spu<x uw ) }
                    z49 : supfz spu<x ≡ spu
                    z49 = begin
                       supfz spu<x ≡⟨ ZChain.sup=u (pzc (ob<x lim spu<x)) (MinSUP.as usup) (o<→≤ <-osuc) z73 ⟩
@@ -1622,12 +1591,19 @@
 
 -- usage (see filter.agda )
 --
--- _⊆'_ : ( A B : HOD ) → Set n
--- _⊆'_ A B = (x : Ordinal ) → odef A x → odef B x
+--  import OD hiding ( _⊆_ )
+-- _⊆_ : ( A B : HOD ) → Set n
+-- _⊆_ A B = {x : Ordinal } → odef A x → odef B x
+-- 
+-- import zorn 
+-- open zorn O _⊆_   -- Zorn on Set inclusion order 
+-- 
+-- open import  Relation.Binary.Structures
 
 -- MaximumSubset : {L P : HOD}
 --        → o∅ o< & L →  o∅ o< & P → P ⊆ L
---        → IsPartialOrderSet P _⊆'_
---        → ( (B : HOD) → B ⊆ P → IsTotalOrderSet B _⊆'_ → SUP P B _⊆'_ )
---        → Maximal P (_⊆'_)
--- MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP  = Zorn-lemma {P} {_⊆'_} 0<P PO SP
+--        → IsPartialOrderSet P _⊆_
+--        → ( (B : HOD) → B ⊆ P → IsTotalOrderSet B _⊆_ → SUP P B _⊆_ )
+--        → Maximal P (_⊆_)
+-- MaximumSubset {L} {P} 0<L 0<P P⊆L PO SP  = Zorn-lemma {P} {_⊆_} 0<P PO SP
+--