Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 184:65e1b2e415bb
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Jul 2019 17:31:52 +0900 |
parents | de3d87b7494f |
children | a002ce0346dd |
files | OD.agda ordinal.agda |
diffstat | 2 files changed, 20 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 21 17:56:12 2019 +0900 +++ b/OD.agda Mon Jul 22 17:31:52 2019 +0900 @@ -525,3 +525,22 @@ lx ≡ ly → ly ≡ lv (od→ord z) → ψ z lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) + ==→o≡' : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y + ==→o≡' {n} {x} {y} eq = lemma1 {!!} where + lemma4 : { x y : OD {suc n} } → (x == y) → ¬ ( od→ord x o< od→ord y ) + lemma4 = {!!} + lemma3 : { x y : OD {suc n} } → (x == y) → od→ord x ≡ od→ord y + -- x < y + -- m m + lemma3 {x} {y} eq with trio< (od→ord x) (od→ord y) + lemma3 {x} {y} eq | tri≈ ¬a b ¬c = b + lemma3 {x} {y} eq | tri< a ¬b ¬c = {!!} + lemma3 {x} {y} eq | tri> ¬a ¬b c = {!!} + lemma1 : { x y : OD {suc n} } → Ord (od→ord x) == Ord (od→ord y) → x ≡ y + lemma1 {x} {y} eq = subst₂ (λ k j → k ≡ j ) oiso oiso (cong (λ k → ord→od k ) lemma2) where + lemma2 : (od→ord x) ≡ (od→ord y) + lemma2 with trio< (od→ord x) (od→ord y) + lemma2 | tri≈ ¬a b ¬c = b + lemma2 | tri< a ¬b ¬c with eq← eq a + ... | lt = ⊥-elim ( o<¬≡ refl lt ) + lemma2 | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl ( eq→ eq c ))
--- a/ordinal.agda Sun Jul 21 17:56:12 2019 +0900 +++ b/ordinal.agda Mon Jul 22 17:31:52 2019 +0900 @@ -17,9 +17,6 @@ lv : Nat ord : OrdinalD {n} lv --- --- Φ (Suc lv) < ℵ lv < OSuc (Suc lv) (ℵ lv) < OSuc ... < OSuc (Suc lv) (Φ (Suc lv)) < OSuc ... < ℵ (Suc lv) --- data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y @@ -300,8 +297,6 @@ proj2 (osuc2 {n} x y) (case2 lt) with d<→lv lt ... | refl = case2 (s< lt) --- omax≡ (omax x x ) (osuc x) (omxx x) - OrdTrans : {n : Level} → Transitive {suc n} _o≤_ OrdTrans (case1 refl) (case1 refl) = case1 refl OrdTrans (case1 refl) (case2 lt2) = case2 lt2 @@ -327,7 +322,7 @@ TransFinite caseΦ caseOSuc record { lv = lx ; ord = (OSuc lx ox) } = caseOSuc lx ox (TransFinite caseΦ caseOSuc record { lv = lx ; ord = ox }) --- we cannot prove this in intutonistic logic +-- we cannot prove this in intutionistic logic -- (¬ (∀ y → ¬ ( ψ y ))) → (ψ y → p ) → p -- postulate -- TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m )