Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 282:6630dab08784
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 May 2020 22:25:12 +0900 |
parents | 81d639ee9bfd |
children | 2d77b6d12a22 |
files | LEMC.agda |
diffstat | 1 files changed, 7 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/LEMC.agda Sat May 09 22:03:17 2020 +0900 +++ b/LEMC.agda Sat May 09 22:25:12 2020 +0900 @@ -121,8 +121,8 @@ } ... | no n = record { min = min min3 - ; x∋min = ? - ; min-empty = {!!} + ; x∋min = {!!} + ; min-empty = min3-empty -- λ y p → min3-empty min3 y p -- p : (min min3 ∋ y) ∧ (x ∋ y) } where lemma : (a-choice ch1 == od∅ ) → od→ord (a-choice ch1) ≡ o∅ lemma eq = begin @@ -136,6 +136,11 @@ ch1not ch1=0 = n (lemma ch1=0) min3 : Minimal (a-choice ch1) ch1not min3 = ( prev (proj2 (is-in ch1)) (λ ch1=0 → n (lemma ch1=0))) + x∋min3 : a-choice ch1 ∋ min min3 + x∋min3 = x∋min min3 + min3-empty : (y : OD ) → ¬ ((min min3 ∋ y) ∧ (x ∋ y)) + min3-empty y p = min-empty min3 y record { proj1 = proj1 p ; proj2 = {!!} } -- (min min3 ∋ y) ∧ (a-choice ch1 ∋ y) + -- p : (min min3 ∋ y) ∧ (x ∋ y) Min1 : (x : OD) → (ne : ¬ (x == od∅ )) → Minimal x ne