Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 827:685f7ae1b821
...
remove ChainP.sup=u
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Aug 2022 09:30:32 +0900 |
parents | da99e787cb7a |
children | 802d70b7ea01 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Aug 18 18:20:54 2022 +0900 +++ b/src/zorn.agda Fri Aug 19 09:30:32 2022 +0900 @@ -252,7 +252,6 @@ field fcy<sup : {z : Ordinal } → FClosure A f y z → (z ≡ supf u) ∨ ( z << supf u ) order : {s z1 : Ordinal} → (lt : s o< u ) → FClosure A f (supf s ) z1 → (z1 ≡ supf u ) ∨ ( z1 << supf u ) - supu=u : supf u ≡ u data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where @@ -307,6 +306,7 @@ ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup u<z ) ) )) ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup u<z ))) ) lt ) + -- supf s o< b order : {b s z1 : Ordinal} → b o< z → s o< b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z s<b fc = zc04 where zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1 @@ -320,7 +320,7 @@ ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u ? is-sup fc ⟫ where zc06 : supf u ≡ u - zc06 = ChainP.supu=u is-sup + zc06 = sup=u ? ? ? zc09 : u o≤ supf s → ( u o≤ b ) ∨ ( supf u ≡ supf b ) zc09 u<s with osuc-≡< (subst (λ k → k o≤ supf s) (sym zc06) u<s) ... | case1 su=ss = zc08 where @@ -334,7 +334,9 @@ zc10 : odef (UnionCF A f mf ay supf b) (supf s) zc10 with zc09 u≤x ... | case1 lt = ⟪ as , ch-is-sup u lt is-sup fc ⟫ - ... | case2 eq = ⟪ as , ch-is-sup u ? is-sup ? ⟫ + ... | case2 eq = ⟪ as , ch-is-sup b ? record { fcy<sup = ? ; order = ? } (init ? ? ) ⟫ where + zc11 : supf (supf s) ≡ supf s + zc11 = ? zc03 : odef (UnionCF A f mf ay supf b) (supf s) zc03 with csupf (o<→≤ s<z) ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ @@ -552,8 +554,7 @@ → FClosure A f (ZChain.supf zc s) z1 → z1 <= ZChain.supf zc b m09 {s} {z} s<b fcz = ZChain.order zc b<A s<b fcz m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab (o<→≤ b<A ) - record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) uz ) } } + m06 = record { fcy<sup = m08 ; order = m09 } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -575,8 +576,7 @@ m05 = sym (ZChain.sup=u zc ab (o<→≤ m09) record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} ) -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab (o<→≤ m09) - record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (o<→≤ b<x) lt )} } + m06 = record { fcy<sup = m07 ; order = m08 } --- --- the maximum chain has fix point of any ≤-monotonic function @@ -741,7 +741,7 @@ zc60 : {w : Ordinal } → FClosure A f (supf0 u1) w → odef (UnionCF A f mf ay supf1 z1 ) w zc60 (init asp refl) with trio< u1 px | inspect supf1 u1 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where + record { fcy<sup = fcy<sup ; order = order } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf1 s) z2 → @@ -751,7 +751,7 @@ ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 ? ) ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 ? } (init (subst (λ k → odef A k ) (sym eq1) ? ) ? ) ⟫ where + record { fcy<sup = fcy<sup ; order = order } (init (subst (λ k → odef A k ) (sym eq1) ? ) ? ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ? -- ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf1 s) z2 → @@ -776,7 +776,7 @@ zc60 : {w : Ordinal } → FClosure A f (supf1 u1) w → odef (UnionCF A f mf ay supf0 z1 ) w zc60 {w} (init asp refl) with trio< u1 px | inspect supf1 u1 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym eq1) (ChainP.supu=u u1-is-sup) } (init asp refl ) ⟫ where + record { fcy<sup = fcy<sup ; order = order } (init asp refl ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) eq1 ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 → @@ -786,7 +786,7 @@ ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) ? )) ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym ? ) (ChainP.supu=u u1-is-sup) } (init ? ? ) ⟫ where + record { fcy<sup = fcy<sup ; order = order } (init ? ? ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) ? ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 →