Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 441:6b26db38367f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 01 Mar 2022 15:33:05 +0900 |
parents | d1c9f5ae5d0a |
children | 3fbcd11c2a35 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 33 insertions(+), 75 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Tue Mar 01 14:31:31 2022 +0900 +++ b/src/generic-filter.agda Tue Mar 01 15:33:05 2022 +0900 @@ -68,38 +68,40 @@ open CountableModel ----- --- a(n) ∈ M --- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q +-- -- -PGHOD : (i : Nat) (P : HOD) (C : CountableModel P) → (p : Ordinal) → HOD -PGHOD i P C p = record { od = record { def = λ x → - odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } - ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } +-- a(n) = /\ { a | a ∈ m (n) ∧ m (n) ∈ Power P) } +A : (i : Nat) (P : HOD) (C : CountableModel P) → HOD +A i P C = record { od = record { def = λ x → + odef (Power P) (ctl→ C i) ∧ odef (* (ctl→ C i)) x } + ; odmax = odmax (Power P) ; <odmax = λ {y} lt → {!!} } --- --- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) --- is not working well --- skipped a(n) may cantains extra elements in possible r -next-p : (p : Ordinal) → (f : HOD → HOD) → Ordinal -next-p p f with is-o∅ ( & (f (* p))) -next-p p f | yes y = p -next-p p f | no not = & (ODC.minimal O (f (* p) ) (λ eq → not (=od∅→≡o∅ eq))) -- axiom of choice +-- b(0) = p +-- b(n+1) = if (b(n) ∩ a(n)) != ∅ then b(n) ∩ a(n) otherwise b(n) - a ( a ∈ ( b(n) - a(n)) from choice ) +-- + +record BR : Set (suc n) where + field + b : HOD + b>0 : o∅ o< & b + +B : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → o∅ o< & x → BR +B P C Zero x lt = record { b = x ; b>0 = lt } +B P C (Suc i) x lt with is-o∅ ( & (BR.b (B P C i x lt) ∩ A i P C ) ) +... | no _ = record { b = BR.b (B P C i x lt ) ∩ A i P C ; b>0 = {!!} } +... | yes y = record { b = BR.b (B P C i x lt) \ {!!} ; b>0 = {!!} } + +B⊆ : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → (lt : o∅ o< & x) → BR.b (B P C (Suc i) x lt) ⊆ BR.b (B P C (Suc i) x lt) +B⊆ = {!!} --- --- search on p(n) --- -find-p : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : Ordinal) → Ordinal -find-p P C Zero x = x -find-p P C (Suc i) x = find-p P C i ( next-p x (λ p → PGHOD i P C (& p) )) - ---- --- G = { r ∈ Power P | ∃ n → r ⊆ p(n) } +-- G = { r ∈ Power P | ∃ n → b(n) ⊆ r } -- record PDN (P p : HOD ) (C : CountableModel P) (x : Ordinal) : Set n where field gr : Nat - pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p P C gr (& p))) y + pn<gr : (y : Ordinal) → odef (BR.b (B P C gr p {!!} )) y → odef (* x) y x∈PP : odef (Power P) x open PDN @@ -129,79 +131,35 @@ open _⊆_ -find-an :{P p : HOD} → (C : CountableModel P ) → odef (Power P) (& p) → Nat -find-an = {!!} - -found-an :{P p : HOD} → (C : CountableModel P ) → (pw : odef (Power P) (& p)) → * (ctl→ C (find-an C pw)) =h= p -found-an = {!!} - -record ⊆-reduce ( p : HOD ) : Set (suc n) where - field - next : HOD - is-small : next ⊆ p ∧ ( ¬ ( next =h= p )) - -record ⊆-reduce-∅ (next : HOD → HOD) : Set (suc n) where - field - p : HOD - is-∅ : & (next p) ≡ o∅ - -⊆-reduction : (next : (x : HOD) → ⊆-reduce x ) → (x : HOD) → ¬ ( x ∈ ( ⊆-reduce.next (next x ))) -⊆-reduction next x = subst (λ k → ¬ (x ∈ ⊆-reduce.next (next k))) *iso (r02 x) where - r01 : (x₁ : Ordinal) → ((y : Ordinal) → y o< x₁ → ¬ odef (⊆-reduce.next (next (* y))) y) → - ¬ odef (⊆-reduce.next (next (* x₁))) x₁ - r01 = {!!} - r02 : (x : HOD) → ¬ (x ∈ ⊆-reduce.next (next (* (& x)))) - r02 x = TransFinite0 {λ x → ¬ ( odef ( ⊆-reduce.next (next (* x))) x) } r01 (& x) - -next-x≡∅ : (next : HOD → HOD) → ( (x : HOD) → ¬ ( x ∈ next x) ) → ⊆-reduce-∅ next -next-x≡∅ = {!!} P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } ; generic = λ D → {!!} } where - PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i P C x ⊆ Power P + PGHOD∈PL : (i : Nat) → (x : Ordinal) → {!!} ⊆ Power P PGHOD∈PL i x = record { incl = λ {x} p → proj1 p } - find-p-⊆P : (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (* (find-p P C i x)) y → odef P y + find-p-⊆P : (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef {!!} y → odef P y find-p-⊆P Zero x y Px Py = subst (λ k → odef P k ) &iso ( incl (ODC.power→⊆ O P (* x) (d→∋ (Power P) Px)) (x<y→∋ Py)) - find-p-⊆P (Suc i) x y Px Py with is-o∅ ( & (PGHOD i P C (& (* x)))) + find-p-⊆P (Suc i) x y Px Py with is-o∅ {!!} ... | yes y1 = find-p-⊆P i x y Px Py ... | no not = find-p-⊆P i (& fmin) y pg-01 Py where fmin : HOD - fmin = ODC.minimal O (PGHOD i P C (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) - fmin∈PGHOD : PGHOD i P C (& (* x)) ∋ fmin - fmin∈PGHOD = ODC.x∋minimal O (PGHOD i P C (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) + fmin = ODC.minimal O {!!} (λ eq → not (=od∅→≡o∅ eq)) + fmin∈PGHOD : {!!} ∋ fmin + fmin∈PGHOD = ODC.x∋minimal O {!!} (λ eq → not (=od∅→≡o∅ eq)) pg-01 : Power P ∋ fmin - pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → PGHOD i P C k ∋ fmin ) &iso fmin∈PGHOD ) + pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → {!!} ∋ fmin ) &iso fmin∈PGHOD ) f⊆PL : PDHOD P p0 C ⊆ Power P f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → - find-p-⊆P (gr lt) _ (& y) Pp0 (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } + find-p-⊆P (gr lt) _ (& y) Pp0 {!!}) } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = {!!} ; pn<gr = {!!} ; x∈PP = {!!} } where - -- reduction : {ψ : (x : HOD) → x =h= od∅ → P x} → - -- q ∈ a(∃ n) ⊆ P → ( p n ⊆ q → PDHOD P p0 C ∋ q ) - -- ∨ (¬ (p n ⊆ q) → induction on (p n - q) - -- PDNp : {!!} -- PD⊆⊆N P C (& p) - -- PDNp = PD∋p - f02 : {x : Ordinal} → odef q x → odef P x - f02 {x} lt = subst (λ k → def (od P) k) &iso (incl q⊆P (subst (λ k → def (od q) k) (sym &iso) lt) ) - f03 : {x : Ordinal} → odef p x → odef q x - f03 {x} lt = subst (λ k → def (od q) k) &iso (incl p⊆q (subst (λ k → def (od p) k) (sym &iso) lt) ) - next1 : Ordinal - next1 = {!!} -- find-p P C (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) P C (& p₁))) - -- f05 : next1 o< ctl-M C - -- f05 = {!!} - -- f06 : odef (Power P) (& q) - -- f06 = {!!} - -- f07 : (y : Ordinal) → odef (* (& q)) y → odef (* {!!} ) y - -- f07 = {!!} f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q = {!!} - open GenericFilter open Filter