Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 633:6cd4a483122c
ZChain1 is not strictly positive
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jun 2022 08:46:26 +0900 |
parents | 1b57a07d7604 |
children | fd7dc6277480 18e45e419a68 |
files | src/zorn.agda |
diffstat | 1 files changed, 34 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jun 20 18:47:37 2022 +0900 +++ b/src/zorn.agda Tue Jun 21 08:46:26 2022 +0900 @@ -247,13 +247,6 @@ → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b --- chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y --- f-total : {x y : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) - -ZChainSupUnique : ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) ( a b : Ordinal ) - → ( za : ZChain A x f a ) → (zb : ZChain A x f b ) → {i : Ordinal } → a o< b → i o≤ a → ZChain.supf za i ≡ ZChain.supf zb i -ZChainSupUnique = {!!} - record Maximal ( A : HOD ) : Set (Level.suc n) where field maximal : HOD @@ -325,13 +318,8 @@ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A (& s) f (& A) ) → SUP A (ZChain.chain zc) - zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) {!!} - A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A (& s) (cf nmx) (& A) ) - → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ))) - A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) - sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (& s) f (& A) ) → SUP A (ZChain.chain zc) - sp0 f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) {!!} + sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (& s) f (& A) ) (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc) + sp0 f mf zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y) @@ -339,11 +327,11 @@ --- the maximum chain has fix point of any ≤-monotonic function --- fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (& s) f (& A) ) - → ( {x y : Ordinal} → x o≤ (& A) → IsTotalOrderSet (ZChain.chain zc) ) - → f (& (SUP.sup (sp0 f mf zc ))) ≡ & (SUP.sup (sp0 f mf zc )) + → (total : IsTotalOrderSet (ZChain.chain zc) ) + → f (& (SUP.sup (sp0 f mf zc total ))) ≡ & (SUP.sup (sp0 f mf zc total)) fixpoint f mf zc total = z14 where chain = ZChain.chain zc - sp1 = sp0 f mf zc + sp1 = sp0 f mf zc total z10 : {a b : Ordinal } → (ca : odef chain a ) → b o< osuc (& A) → (ab : odef A b ) → HasPrev A chain ab f ∨ IsSup A chain {b} ab -- (supO chain (ZChain.chain⊆A zc) (ZChain.f-total zc) ≡ b ) → * a < * b → odef chain b @@ -366,8 +354,8 @@ ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p )) ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p ) -- λ {y} zy → subst (λ k → (y ≡ & k ) ∨ (y << & k)) ? (SUP.x<sup sp1 ? ) } - z14 : f (& (SUP.sup (sp0 f mf zc))) ≡ & (SUP.sup (sp0 f mf zc)) - z14 with total {& A} {& A} o≤-refl (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 )) z12 + z14 : f (& (SUP.sup (sp0 f mf zc total ))) ≡ & (SUP.sup (sp0 f mf zc total )) + z14 with total (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 )) z12 ... | tri< a ¬b ¬c = ⊥-elim z16 where z16 : ⊥ z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.A∋maximal sp1 )) @@ -387,12 +375,13 @@ -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (& s) (cf nmx) (& A)) → ({x y : Ordinal} → x o≤ & A → IsTotalOrderSet (ZChain.chain zc)) → ⊥ - z04 nmx zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) + z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (& s) (cf nmx) (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ + z04 nmx zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 )))) (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc total ))) -- x ≡ f x ̄ - (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where -- x < f x - sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc + (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1 ))) where -- x < f x + sp1 : SUP A (ZChain.chain zc) + sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc total c = & (SUP.sup sp1) -- @@ -690,27 +679,32 @@ SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) - ind-mono : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) { y : Ordinal} (ay : odef A y) → (x : Ordinal) - → (prev : (z : Ordinal) → z o< x → ZChain A y f z) - → (z : Ordinal) → (z<x : z o< x) → ZChain.chain (prev z z<x ) ⊆' ZChain.chain ( ind f mf ay x prev ) - ind-mono f mf ay x prev z z<x = {!!} - postulate TFcomm : { ψ : Ordinal → Set (Level.suc n) } → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x - SZ-mono : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) - → {a b : Ordinal } → a o< b → - ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) a ) ⊆' - ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) b ) - SZ-mono f mf {y} ay {a} {b} a<b = TransFinite0 {λ b → a o< b → ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) a ) ⊆' - ZChain.chain (TransFinite {λ z → ZChain A y f z } (ind f mf ay ) b ) } szind b a<b where - szind : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → a o< y₁ → - ZChain.chain (TransFinite (ind f mf ay) a) ⊆' ZChain.chain (TransFinite (ind f mf ay) y₁)) → - a o< x → ZChain.chain (TransFinite (ind f mf ay) a) ⊆' ZChain.chain (TransFinite (ind f mf ay) x) - szind = {!!} -- + record ZChain1 (supf : (z : Ordinal ) → HOD ) ( z : Ordinal ) : Set (Level.suc n) where + field + chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y + f-total : {x : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) + SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) + → (z : Ordinal) → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) z + SZ1 f mf {y} ay z = TransFinite {λ w → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) w} indp z where + indp : (x : Ordinal) → + ((y₁ : Ordinal) → y₁ o< x → ZChain1 (λ y₂ → ZChain.chain (TransFinite (ind f mf ay) y₂)) y₁) → + ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x + indp x prev with Oprev-p x + ... | yes op = sz02 where + sz02 : ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x + sz02 with ODC.∋-p O A (* x) + ... | no noax = {!!} + ... | yes noax = {!!} + ... | no ¬ox with trio< x y + ... | tri< a ¬b ¬c = {!!} + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b y<x = {!!} zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM @@ -722,7 +716,7 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) - ... | yes ¬Maximal = ⊥-elim ( z04 nmx zorn04 {!!} ) where + ... | yes ¬Maximal = ⊥-elim ( z04 nmx zorn04 zc1 ) where -- if we have no maximal, make ZChain, which contradict SUP condition nmx : ¬ Maximal A nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where @@ -730,6 +724,7 @@ zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ zorn04 : ZChain A (& s) (cf nmx) (& A) zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) + zc1 = (ZChain1.f-total (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as) (& A)) o≤-refl ) -- usage (see filter.agda ) --