Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 493:71436ccbc804
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Apr 2022 07:39:52 +0900 |
parents | e28b1da1b58d |
children | 45b19d35dc07 |
files | src/zorn.agda |
diffstat | 1 files changed, 90 insertions(+), 82 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 09 07:03:07 2022 +0900 +++ b/src/zorn.agda Sat Apr 09 07:39:52 2022 +0900 @@ -47,181 +47,189 @@ open Element -IsPartialOrderSet : ( A : HOD ) → (_≤_ : (x y : HOD) → Set n ) → Set (suc n) -IsPartialOrderSet A _≤_ = IsPartialOrder _≤A_ _≡A_ where - _≤A_ : (x y : Element A ) → Set n - x ≤A y = elm x ≤ elm y +IsPartialOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +IsPartialOrderSet A _<_ = IsStrictPartialOrder _<A_ _≡A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y _≡A_ : (x y : Element A ) → Set (suc n) x ≡A y = elm x ≡ elm y open _==_ open _⊆_ -⊆-IsPartialOrderSet : { A B : HOD } → B ⊆ A → {_≤_ : (x y : HOD) → Set n } → IsPartialOrderSet A _≤_ → IsPartialOrderSet B _≤_ -⊆-IsPartialOrderSet {A} {B} B⊆A {_≤_} PA = record { - isPreorder = record { isEquivalence = record { refl = ? ; sym = {!!} ; trans = {!!} } ; reflexive = {!!} ; trans = {!!} } - ; antisym = {!!} - } +⊆-IsPartialOrderSet : { A B : HOD } → B ⊆ A → {_<_ : (x y : HOD) → Set n } → IsPartialOrderSet A _<_ → IsPartialOrderSet B _<_ +⊆-IsPartialOrderSet {A} {B} B⊆A {_<_} PA = record { + isEquivalence = record { refl = refl1 ; sym = {!!} ; trans = {!!} } ; irrefl = {!!} ; trans = {!!} ; <-resp-≈ = {!!} + } where + _<B_ : (x y : Element B ) → Set n + x <B y = elm x < elm y + _≡B_ : (x y : Element B ) → Set (suc n) + x ≡B y = elm x ≡ elm y + _≤B_ : (x y : Element B ) → Set (suc n) + x ≤B y = (elm x ≡ elm y) ∨ (elm x < elm y) + refl1 : Reflexive _≤B_ + refl1 = case1 refl -- IsEquivalence.refl ( IsStrictPartialOrder.isEquivalence PA ) + -- refl1 {case2 lt} = ? -IsTotalOrderSet : ( A : HOD ) → (_≤_ : (x y : HOD) → Set n ) → Set (suc n) -IsTotalOrderSet A _≤_ = IsTotalOrder _≤A_ _≡A_ where - _≤A_ : (x y : Element A ) → Set n - x ≤A y = elm x ≤ elm y +IsTotalOrderSet : ( A : HOD ) → (_<_ : (x y : HOD) → Set n ) → Set (suc n) +IsTotalOrderSet A _<_ = IsStrictTotalOrder _<A_ _≡A_ where + _<A_ : (x y : Element A ) → Set n + x <A y = elm x < elm y _≡A_ : (x y : Element A ) → Set (suc n) x ≡A y = elm x ≡ elm y me : { A a : HOD } → A ∋ a → Element A me {A} {a} lt = record { elm = a ; is-elm = lt } -record SUP ( A B : HOD ) (_≤_ : (x y : HOD) → Set n ) : Set (suc n) where +record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field sup : HOD A∋maximal : A ∋ sup - x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x ≤ sup ) -- B is Total, use positive + x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive -record Maximal ( A : HOD ) (_≤_ : (x y : HOD) → Set n ) : Set (suc n) where +record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field maximal : HOD A∋maximal : A ∋ maximal - ¬maximal≤x : {x : HOD} → A ∋ x → ¬ maximal ≤ x -- A is Partial, use negative + ¬maximal<x : {x : HOD} → A ∋ x → ¬ maximal < x -- A is Partial, use negative -record ZChain ( A : HOD ) (y : Ordinal) (_≤_ : (x y : HOD) → Set n ) : Set (suc n) where +record ZChain ( A : HOD ) (y : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field fb : (x : Ordinal ) → HOD - A∋fb : (ox : Ordinal ) → ox o≤ y → A ∋ fb ox - total : {ox oz : Ordinal } → (x≤y : ox o≤ y ) → (z≤y : oz o≤ y ) → ( ox ≡ oz ) ∨ ( fb ox ≤ fb oz ) ∨ ( fb oz ≤ fb ox ) - monotonic : {ox oz : Ordinal } → (x≤y : ox o≤ y ) → (z≤y : oz o≤ y ) → ox o≤ oz → fb ox ≤ fb oz + A∋fb : (ox : Ordinal ) → ox o< y → A ∋ fb ox + total : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ( ox ≡ oz ) ∨ ( fb ox < fb oz ) ∨ ( fb oz < fb ox ) + monotonic : {ox oz : Ordinal } → (x<y : ox o< y ) → (z<y : oz o< y ) → ox o< oz → fb ox < fb oz -Zorn-lemma : { A : HOD } → { _≤_ : (x y : HOD) → Set n } +Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A - → IsPartialOrderSet A _≤_ - → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B _≤_ → SUP A B _≤_ ) -- SUP condition - → Maximal A _≤_ -Zorn-lemma {A} {_≤_} 0<A PO supP = zorn00 where + → IsPartialOrderSet A _<_ + → ( ( B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B _<_ → SUP A B _<_ ) -- SUP condition + → Maximal A _<_ +Zorn-lemma {A} {_<_} 0<A PO supP = zorn00 where someA : HOD someA = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) isSomeA : A ∋ someA isSomeA = ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) HasMaximal : HOD - HasMaximal = record { od = record { def = λ y → odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y ≤ * m))} ; odmax = & A ; ≤odmax = z08 } where - z08 : {y : Ordinal} → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y ≤ * m))) → y o< & A + HasMaximal = record { od = record { def = λ y → odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))} ; odmax = & A ; <odmax = z08 } where + z08 : {y : Ordinal} → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))) → y o< & A z08 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) - no-maximal : HasMaximal =h= od∅ → (y : Ordinal) → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y ≤ * m))) → ⊥ + no-maximal : HasMaximal =h= od∅ → (y : Ordinal) → (odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m))) → ⊥ no-maximal nomx y P = ¬x<0 (eq→ nomx {y} ⟪ proj1 P , (λ m am → (proj2 P) m am ) ⟫ ) Gtx : { x : HOD} → A ∋ x → HOD - Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x ≤ (* y)) } ; odmax = & A ; ≤odmax = z09 } where - z09 : {y : Ordinal} → (odef A y ∧ (x ≤ (* y))) → y o< & A + Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = z09 } where + z09 : {y : Ordinal} → (odef A y ∧ (x < (* y))) → y o< & A z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) - z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a ≤ b ) → b ≤ a → ⊥ - z01 {a} {b} A∋a A∋b (case1 a=b) b≤a = {!!} -- proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b≤a - z01 {a} {b} A∋a A∋b (case2 a≤b) b≤a = {!!} -- proj1 (proj1 (PO (me A∋b) (me A∋a)) b≤a) a≤b + z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ + z01 {a} {b} A∋a A∋b (case1 a=b) b<a = {!!} -- proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!} -- proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b -- ZChain is not compatible with the SUP condition record BX (x y : Ordinal) (fb : ( x : Ordinal ) → HOD ) : Set n where field bx : Ordinal - bx≤y : bx o≤ y + bx<y : bx o< y is-fb : x ≡ & (fb bx ) - bx≤A : (z : ZChain A (& A) _≤_ ) → {x : Ordinal } → (bx : BX x (& A) ( ZChain.fb z )) → BX.bx bx o≤ & A - bx≤A z {x} bx = BX.bx≤y bx - B : (z : ZChain A (& A) _≤_ ) → HOD - B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; ≤odmax = {!!} } - z11 : (z : ZChain A (& A) _≤_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) + bx<A : (z : ZChain A (& A) _<_ ) → {x : Ordinal } → (bx : BX x (& A) ( ZChain.fb z )) → BX.bx bx o< & A + bx<A z {x} bx = BX.bx<y bx + B : (z : ZChain A (& A) _<_ ) → HOD + B z = record { od = record { def = λ x → BX x (& A) ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } + z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) - obx : (z : ZChain A (& A) _≤_ ) → {x : HOD} → B z ∋ x → Ordinal + obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal obx z {x} bx = BX.bx bx - obx=fb : (z : ZChain A (& A) _≤_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z (BX.bx bx) + obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z (BX.bx bx) obx=fb z {x} bx = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (BX.is-fb bx)) - B⊆A : (z : ZChain A (& A) _≤_ ) → B z ⊆ A - B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx≤y bx) ) } - PO-B : (z : ZChain A (& A) _≤_ ) → IsPartialOrderSet (B z) _≤_ - PO-B z = subst₂ (λ j k → IsPartialOrder j k ) {!!} {!!} {!!} where - _≤B_ = {!!} + B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A + B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx) (BX.bx<y bx) ) } + PO-B : (z : ZChain A (& A) _<_ ) → IsPartialOrderSet (B z) _<_ + PO-B z = subst₂ (λ j k → IsStrictPartialOrder j k ) {!!} {!!} {!!} where + _<B_ = {!!} _≡B_ = {!!} -- a b = {!!} -- PO record { elm = elm a ; is-elm = incl ( B⊆A z) (is-elm a) } record { elm = elm b ; is-elm = incl ( B⊆A z) (is-elm b) } - bx-monotonic : (z : ZChain A (& A) _≤_ ) → {x y : Element (B z)} → obx z (is-elm x) o≤ obx z (is-elm y) → elm x ≤ elm y - bx-monotonic z {x} {y} a = subst₂ (λ j k → j ≤ k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z (bx≤A z (is-elm x)) (bx≤A z (is-elm y)) a ) + bx-monotonic : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → obx z (is-elm x) o< obx z (is-elm y) → elm x < elm y + bx-monotonic z {x} {y} a = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z (bx<A z (is-elm x)) (bx<A z (is-elm y)) a ) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - z12 : (z : ZChain A (& A) _≤_ ) → {a b : HOD } → (x : BX (& a) (& A) (ZChain.fb z)) (y : BX (& b) (& A) (ZChain.fb z)) - → obx z x ≡ obx z y → bx≤A z x ≅ bx≤A z y + z12 : (z : ZChain A (& A) _<_ ) → {a b : HOD } → (x : BX (& a) (& A) (ZChain.fb z)) (y : BX (& b) (& A) (ZChain.fb z)) + → obx z x ≡ obx z y → bx<A z x ≅ bx<A z y z12 z {a} {b} x y eq = {!!} - bx-inject : (z : ZChain A (& A) _≤_ ) → {x y : Element (B z)} → BX.bx (is-elm x) ≡ BX.bx (is-elm y) → elm x ≡ elm y + bx-inject : (z : ZChain A (& A) _<_ ) → {x y : Element (B z)} → BX.bx (is-elm x) ≡ BX.bx (is-elm y) → elm x ≡ elm y bx-inject z {x} {y} eq = begin elm x ≡⟨ {!!} ⟩ {!!} ≡⟨ cong (λ k → {!!} ) {!!} ⟩ {!!} ≡⟨ {!!} ⟩ elm y ∎ where open ≡-Reasoning - B-is-total : (z : ZChain A (& A) _≤_ ) → IsTotalOrderSet (B z) _≤_ + B-is-total : (z : ZChain A (& A) _<_ ) → IsTotalOrderSet (B z) _<_ B-is-total = {!!} - B-Tri : (z : ZChain A (& A) _≤_ ) → Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x ≤ elm y ) + B-Tri : (z : ZChain A (& A) _<_ ) → Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y ) B-Tri z x y with trio< (obx z {!!}) (obx z {!!}) - ... | tri< a ¬b ¬c = {!!} where -- tri≤ z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where - z10 : elm x ≤ elm y + ... | tri< a ¬b ¬c = {!!} where -- tri< z10 (λ eq → proj1 (proj2 (PO-B z x y) eq ) z10) (λ ¬c → proj1 (proj1 (PO-B z y x) ¬c ) z10) where + z10 : elm x < elm y z10 = {!!} -- bx-monotonic z {x} {y} a ... | tri≈ ¬a b ¬c = {!!} -- tri≈ {!!} (bx-inject z {x} {y} b) {!!} ... | tri> ¬a ¬b c = {!!} -- tri> (λ ¬a → proj1 (proj1 (PO-B z x y) ¬a ) (bx-monotonic z {y} {x} c) ) (λ eq → proj2 (proj2 (PO-B z x y) eq ) (bx-monotonic z {y} {x} c)) (bx-monotonic z {y} {x} c) - ZChain→¬SUP : (z : ZChain A (& A) _≤_ ) → ¬ (SUP A (B z) _≤_ ) + ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A) z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc - z02 : (x : HOD) → B z ∋ x → SUP.sup sp ≤ x → ⊥ - z02 x xe s≤x = z01 (incl (B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s≤x + z02 : (x : HOD) → B z ∋ x → SUP.sup sp < x → ⊥ + z02 x xe s<x = z01 (incl (B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x ind : HasMaximal =h= od∅ - → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _≤_ ) - → ZChain A x _≤_ + → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _<_ ) + → ZChain A x _<_ ind nomx x prev with Oprev-p x ... | yes op with ODC.∋-p O A (* x) ... | no ¬Ax = {!!} where -- we have previous ordinal and ¬ A ∋ x, use previous Zchain px = Oprev.oprev op - zc1 : ZChain A px _≤_ + zc1 : ZChain A px _<_ zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - z04 : {!!} -- (sup : HOD) (as : A ∋ sup) → & sup o≤ osuc x → sup ≤ ZChain.fb zc1 as - z04 sup as s≤x with trio< (& sup) x + z04 : {!!} -- (sup : HOD) (as : A ∋ sup) → & sup o< osuc x → sup < ZChain.fb zc1 as + z04 sup as s<x with trio< (& sup) x ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) ) - ... | tri< a ¬b ¬c = {!!} -- ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o≤ k ) (sym (Oprev.oprev=x op)) a ) - ... | tri> ¬a ¬b c with osuc-≡< s≤x + ... | tri< a ¬b ¬c = {!!} -- ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o< k ) (sym (Oprev.oprev=x op)) a ) + ... | tri> ¬a ¬b c with osuc-≡< s<x ... | case1 eq = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans eq (sym &iso)) as) ) ... | case2 lt = ⊥-elim (¬a lt ) ... | yes ax = z06 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op - zc1 : ZChain A px _≤_ + zc1 : ZChain A px _<_ zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - z06 : ZChain A x _≤_ + z06 : ZChain A x _<_ z06 with is-o∅ (& (Gtx ax)) ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal - x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x ≤ * m) - x-is-maximal m am = ¬x≤m where - ¬x≤m : ¬ (* x ≤ * m) - ¬x≤m x≤m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x ≤ k ) (cong (*) (sym &iso)) x≤m ⟫ (≡o∅→=od∅ nogt) + x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x < * m) + x-is-maximal m am = ¬x<m where + ¬x<m : ¬ (* x < * m) + ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) ... | no not = {!!} where ind nomx x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = {!!} where - zc1 : ZChain A (& A) _≤_ + zc1 : ZChain A (& A) _<_ zc1 = prev (& A) a ... | tri≈ ¬a b ¬c = {!!} where ... | tri> ¬a ¬b c with ODC.∋-p O A (* x) ... | no ¬Ax = {!!} where ... | yes ax with is-o∅ (& (Gtx ax)) ... | yes nogt = ⊥-elim (no-maximal nomx x ⟪ subst (λ k → odef A k) &iso ax , x-is-maximal ⟫ ) where -- no larger element, so it is maximal - x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x ≤ * m) - x-is-maximal m am = ¬x≤m where - ¬x≤m : ¬ (* x ≤ * m) - ¬x≤m x≤m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x ≤ k ) (cong (*) (sym &iso)) x≤m ⟫ (≡o∅→=od∅ nogt) + x-is-maximal : (m : Ordinal) → odef A m → ¬ (* x < * m) + x-is-maximal m am = ¬x<m where + ¬x<m : ¬ (* x < * m) + ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫ (≡o∅→=od∅ nogt) ... | no not = {!!} where - zorn00 : Maximal A _≤_ + zorn00 : Maximal A _<_ zorn00 with is-o∅ ( & HasMaximal ) - ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal≤x = zorn02 } where + ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where -- yes we have the maximal hasm : odef HasMaximal ( & ( ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ) ) hasm = ODC.x∋minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) zorn01 : A ∋ ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) zorn01 = proj1 hasm - zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ≤ x) - zorn02 {x} ax m≤x = ((proj2 hasm) (& x) ax) (subst₂ (λ j k → j ≤ k) (sym *iso) (sym *iso) m≤x ) + zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) + zorn02 {x} ax m<x = ((proj2 hasm) (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) ... | yes ¬Maximal = ⊥-elim {!!} where -- if we have no maximal, make ZChain, which contradict SUP condition - z : (x : Ordinal) → HasMaximal =h= od∅ → ZChain A x _≤_ + z : (x : Ordinal) → HasMaximal =h= od∅ → ZChain A x _<_ z x nomx = TransFinite (ind nomx) x _⊆'_ : ( A B : HOD ) → Set n