Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 751:71ad137dd101
..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 22 Jul 2022 19:18:05 +0900 |
parents | b96491f7c775 |
children | 2be90b90deb3 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Jul 22 16:52:17 2022 +0900 +++ b/src/zorn.agda Fri Jul 22 19:18:05 2022 +0900 @@ -449,10 +449,29 @@ (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u<x (ChainP-next A f mf ay _ is-sup) (fsuc _ fc)) ⟫ zc1 : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 A f mf ay zc y₁) → ZChain1 A f mf ay zc x zc1 x prev with Oprev-p x - ... | yes op = record { is-max = is-max ; chain-mono2 = chain-mono2 x ; fcy<sup = ? ; sup=u = ? ; order = ? } where + ... | yes op = record { is-max = is-max ; chain-mono2 = chain-mono2 x ; fcy<sup = fcy<sup ; sup=u = ? ; order = order } where px = Oprev.oprev op + px<x : px o< x + px<x = subst (λ k → px o< k ) (Oprev.oprev=x op) <-osuc zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt + fcy<sup : {u w : Ordinal} → u o< x → FClosure A f y w → w << ZChain.supf zc u + fcy<sup {a} {b} a<x fcb with trio< a px + ... | tri< a<px ¬b ¬c = ZChain1.fcy<sup (prev px px<x) a<px fcb + ... | tri≈ ¬a a=px ¬c = ? + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → a o< k ) (sym (Oprev.oprev=x op)) a<x ⟫ ) + order : {b sup1 z1 : Ordinal} → b o< x → + sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b + order {b} {sup1} {z1} b<x s<b fcz with trio< b px + ... | tri< b<px ¬b ¬c = ZChain1.order (prev px px<x) b<px s<b fcz + ... | tri≈ ¬a b=px ¬c = ? + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) + sup=u : {b : Ordinal} {ab : odef A b} → b o< x → + IsSup A (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) ab → ZChain.supf zc b ≡ b + sup=u {b} {ab} b<x is-sup with trio< b px + ... | tri< b<px ¬b ¬c = ZChain1.sup=u (prev px px<x) b<px is-sup + ... | tri≈ ¬a b=px ¬c = ZChain.sup=u zc ? is-sup + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → HasPrev A (UnionCF A f mf ay (ZChain.supf zc) x) ab f ∨ IsSup A (UnionCF A f mf ay (ZChain.supf zc) x) ab → @@ -461,8 +480,6 @@ is-max {a} {b} ua b<x ab (case2 is-sup) a<b with ODC.p∨¬p O ( HasPrev A (UnionCF A f mf ay (ZChain.supf zc) x) ab f ) ... | case1 has-prev = is-max-hp x {a} {b} ua b<x ab has-prev a<b ... | case2 ¬fy<x = m01 where - px<x : px o< x - px<x = subst (λ k → px o< k ) (Oprev.oprev=x op) <-osuc m01 : odef (UnionCF A f mf ay (ZChain.supf zc) x) b m01 with trio< b px --- px < b < x ... | tri> ¬a ¬b c = ⊥-elim (¬p<x<op ⟪ c , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫)