Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 99:74330d0cdcbc
Power Set done with min-sup assumption
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Jun 2019 09:35:14 +0900 |
parents | 1ff0ddc991ac |
children | a402881cc341 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 20 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon Jun 10 00:29:20 2019 +0900 +++ b/ordinal-definable.agda Mon Jun 10 09:35:14 2019 +0900 @@ -134,9 +134,6 @@ =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) -=>-iso : {n : Level } {x y z : OD {suc n} } → (x == y) → def z (od→ord x ) → def z (od→ord y ) -=>-iso {n} {x} {y} {z} eq z>x = {!!} - ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) @@ -178,6 +175,15 @@ od≡-def : {n : Level} → { x : Ordinal {suc n} } → ord→od x ≡ record { def = λ z → z o< x } od≡-def {n} {x} = subst (λ k → ord→od x ≡ k ) oiso (cong ( λ k → ord→od k ) (≡-def {n} {x} )) +==→o≡1 : {n : Level} → { x y : OD {suc n} } → x == y → od→ord x ≡ od→ord y +==→o≡1 eq = ==→o≡ (subst₂ (λ k j → k == j ) (sym oiso) (sym oiso) eq ) + +==-def-l : {n : Level } {x y : Ordinal {suc n} } { z : OD {suc n} }→ (ord→od x == ord→od y) → def z x → def z y +==-def-l {n} {x} {y} {z} eq z>x = subst ( λ k → def z k ) (==→o≡ eq) z>x + +==-def-r : {n : Level } {x y : OD {suc n} } { z : Ordinal {suc n} }→ (x == y) → def x z → def y z +==-def-r {n} {x} {y} {z} eq z>x = subst (λ k → def k z ) (subst₂ (λ j k → j ≡ k ) oiso oiso (cong (λ k → ord→od k) (==→o≡1 eq))) z>x + ∋→o< : {n : Level} → { a x : OD {suc n} } → a ∋ x → od→ord x o< od→ord a ∋→o< {n} {a} {x} lt = t where t : (od→ord x) o< (od→ord a) @@ -339,20 +345,24 @@ power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = proj1 lemma-s where minsup : OD - minsup = csuc (ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ) - lemma-t : minsup ∋ t - lemma-t = o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) {!!} {!!} )) {!!} {!!} ) + minsup = ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) + lemma-t : csuc minsup ∋ t + lemma-t = o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) refl diso )) refl refl ) lemma-s : ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x - lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) {!!} {!!} ) - lemma-s | case1 eq = {!!} - lemma-s | case2 lt = {!!} + lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) refl diso ) + lemma-s | case1 eq = def-subst ( ==-def-r (o≡→== eq) (subst (λ k → def k (od→ord x)) (sym oiso) t∋x ) ) oiso refl + lemma-s | case2 lt = transitive {n} {minsup} {t} {x} (def-subst (o<→c< lt) oiso refl ) t∋x -- = {!!} -- transitive {!!} t∋x power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A = def-subst ( o<→c< lemma ) {!!} {!!} where + power← A t t→A = def-subst {suc n} {_} {_} {Power A} {od→ord t} + ( o<→c< {suc n} {od→ord (ZFSubset A (ord→od (od→ord t)) )} {sup-o (λ x → od→ord (ZFSubset A (ord→od x)))} + lemma ) refl lemma1 where lemma-eq : ZFSubset A t == t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = record { proj2 = w ; proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } + lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t + lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (==→o≡1 (lemma-eq)) lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x))) lemma = sup-o< union-lemma-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → csuc z ∋ z