Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 85:7494ae6b83c6
omax-induction does not work
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jun 2019 02:58:17 +0900 (2019-06-04) |
parents | 4b2aff372b7c |
children | 08be6351927e |
files | ordinal.agda |
diffstat | 1 files changed, 24 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal.agda Tue Jun 04 23:58:58 2019 +0900 +++ b/ordinal.agda Wed Jun 05 02:58:17 2019 +0900 @@ -199,6 +199,9 @@ maxα x y | tri> ¬a ¬b c = y maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } +-- +-- max ( osuc x , osuc y ) +-- omax : {n : Level} ( x y : Ordinal {suc n} ) → Ordinal {suc n} omax {n} x y with <-cmp (lv x) (lv y) omax {n} x y | tri< a ¬b ¬c = osuc y @@ -208,6 +211,21 @@ omax {n} x y | tri≈ ¬a refl ¬c | tri≈ ¬a₁ b ¬c₁ = osuc x omax {n} x y | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = osuc x +omax-induction : {n : Level} ( x y : Ordinal {suc n} ) → { ψ : ( m : Ordinal {suc n} ) → m ≡ omax x y → Set (suc n) } + → ( lv x < lv y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) + → ( lv y < lv x → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) + → ( lv y ≡ lv x → ord x ≅ ord y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) + → ( lv y ≡ lv x → ord x d< ord y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) + → ( lv y ≡ lv x → ord y d< ord x → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) + → ψ ( omax x y ) refl +omax-induction {n} x y c1 c2 c3 c4 c5 with <-cmp (lv x) (lv y) +omax-induction {n} x y c1 c2 c3 c4 c5 | tri< a ¬b ¬c = c1 a (osuc y) refl +omax-induction {n} x y c1 c2 c3 c4 c5 | tri> ¬a ¬b c = c2 c (osuc x) refl +omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord y) +omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = c4 refl a (osuc y) refl +omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = c3 refl refl (osuc x) refl +omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = c5 refl c (osuc x) refl + omax< : {n : Level} ( x y : Ordinal {suc n} ) → x o< y → osuc y ≡ omax x y omax< {n} x y lt with <-cmp (lv x) (lv y) omax< {n} x y lt | tri< a ¬b ¬c = refl @@ -220,10 +238,12 @@ omax< {n} x y (case2 lt) | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim ( o<> (case2 lt) (case2 c) ) omaxx : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y -omaxx {n} x y with trio< x y -omaxx {n} x y | tri< a ¬b ¬c = {!!} -omaxx {n} x y | tri> ¬a ¬b c = {!!} -omaxx {n} x y | tri≈ ¬a b ¬c = {!!} +omaxx {n} x y = omax-induction {n} x y {λ om refl → x o< om } + ( λ lx<ly omax refl → ordtrans (case1 lx<ly) <-osuc ) + ( λ lx>ly omax → {!!} ) -- ordtrans (case1 lx>ly) <-osuc ) + ( λ refl refl omax refl → {!!} ) -- <-osuc ) + ( λ refl ox<oy omax → {!!} ) -- ordtrans (case2 ox<oy) <-osuc ) + ( λ refl ox>oy omax → {!!} ) -- ordtrans (case2 ox>oy) <-osuc ) OrdTrans : {n : Level} → Transitive {suc n} _o≤_ OrdTrans (case1 refl) (case1 refl) = case1 refl