Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1128:7d4966f2f74d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 10 Jan 2023 17:16:16 +0900 |
parents | c4f4868a8cdd |
children | 5053fd12134a |
files | src/filter.agda |
diffstat | 1 files changed, 22 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Tue Jan 10 09:29:58 2023 +0900 +++ b/src/filter.agda Tue Jan 10 17:16:16 2023 +0900 @@ -267,21 +267,33 @@ mu24 = subst (λ k → & (r ∩ q) ≡ k ) (cong (&) mu26) (cong (&) (==→o≡ mu25) ) mu20 : F ∋ (r ∩ q) mu20 = case1 record { y = & ( * ry ∩ * qy ) ; mfy = mu23 ; x=y∪p = mu24 } - mu02 {r} {q} (case1 record { y = ry ; mfy = mfry ; x=y∪p = x=ry∪p }) (case2 mfq) Lrq = - case1 record { y = & ( * ry ∩ q ) ; mfy = mu23 ; x=y∪p = cong (&) (==→o≡ mu25) } where + mu02 {r} {q} (case1 record { y = ry ; mfy = mfry ; x=y∪p = x=ry∪p }) (case2 mfq) Lrq = case2 mu24 where mu21 : r ≡ * ry ∪ p mu21 = subst₂ (λ j k → j ≡ k ) *iso (trans *iso (cong (λ k → (* ry ∪ k)) *iso)) (cong (*) x=ry∪p ) mu23 : odef (filter mf) (& (* ry ∩ q)) mu23 = filter2 mf (subst (λ k → odef (filter mf) k) (sym &iso) mfry) mfq (CAP (subst (λ k → odef L k ) (sym &iso) (f⊆L mf mfry)) (f⊆L mf mfq) ) - mu25 : od (r ∩ q) == od (* (& (* ry ∩ q)) ∪ * (& p)) - mu25 = subst (λ k → od (k ∩ q)== od (* (& (* ry ∩ q)) ∪ * (& p))) (sym mu21) record { eq→ = mu27 ; eq← = mu28 } where - mu27 : {x : Ordinal} → odef (* ry ∪ p) x ∧ odef q x → odef (* (& (* ry ∩ q))) x ∨ odef (* (& p)) x - mu27 {x} ⟪ case1 ryx , qx ⟫ = case1 (subst (λ k → odef k x) (sym *iso) ⟪ ryx , qx ⟫ ) - mu27 {x} ⟪ case2 px , qx ⟫ = case2 (subst (λ k → odef k x) (sym *iso) px ) - mu28 : {x : Ordinal} → odef (* (& (* ry ∩ q))) x ∨ odef (* (& p)) x → odef (* ry ∪ p) x ∧ odef q x - mu28 {x} (case1 ryq) = ? - mu28 {x} (case2 px) = ⟪ case2 (subst (λ k → odef k x) *iso px ) , ? ⟫ + mu26 : (p ∩ q) =h= od∅ + mu26 = record { eq→ = λ lt → ⊥-elim ( mu29 lt) ; eq← = λ lt → ⊥-elim ( ¬x<0 lt ) } where + q-p : HOD + q-p = q \ p + [q-p]⊆q : ? + [q-p]⊆q = ? + mu30 : odef (filter mf ) (& ( q ∩ ( q \ p ))) + mu30 = filter2 mf ? ? ? + mu31 : odef (filter mf ) (& p ) + mu31 = filter1 mf ? ? ? + mu29 : {x : Ordinal} → ¬ ( odef (p ∩ q) x ) + mu29 {x} pqx = ? + mu25 : od (r ∩ q) == od (* (& (* ry ∩ q))) + mu25 = subst (λ k → od (k ∩ q)== od (* (& (* ry ∩ q)) )) (sym mu21) record { eq→ = mu27 ; eq← = mu28 } where + mu27 : {x : Ordinal} → odef (* ry ∪ p) x ∧ odef q x → odef (* (& (* ry ∩ q))) x + mu27 {x} ⟪ case1 ryx , qx ⟫ = subst (λ k → odef k x) (sym *iso) ⟪ ryx , qx ⟫ + mu27 {x} ⟪ case2 px , qx ⟫ = ? + mu28 : {x : Ordinal} → odef (* (& (* ry ∩ q))) x → odef (* ry ∪ p) x ∧ odef q x + mu28 {x} ryq = ? + mu24 : odef (filter mf) (& (r ∩ q)) + mu24 = ? mu02 {r} {q} (case2 mfr) (case1 record { y = y ; mfy = mfp ; x=y∪p = x=y∪p }) Lrq = ? mu02 {r} {q} (case2 mfr) (case2 mfq ) Lrq = case2 (filter2 mf mfr mfq Lrq ) FisFilter : Filter {L} {P} LP