Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 7:813f1b3b000b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 May 2019 19:14:16 +0900 |
parents | d9b704508281 |
children | cb014a103467 |
files | zf.agda |
diffstat | 1 files changed, 43 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/zf.agda Sat May 11 11:40:31 2019 +0900 +++ b/zf.agda Sat May 11 19:14:16 2019 +0900 @@ -50,7 +50,7 @@ union← : ( X x y : ZFSet ) → Union X ∋ y → X ∋ x → x ∋ y _∈_ : ( A B : ZFSet ) → Set m A ∈ B = B ∋ A - _⊆_ : ( A B : ZFSet ) → { x : ZFSet } → { A∋x : Set m } → Set m + _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → ∀{ A∋x : Set m } → Set m _⊆_ A B {x} {A∋x} = B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Restrict ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) @@ -67,8 +67,8 @@ -- extentionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) extentionality : ( A B z : ZFSet ) → (( A ∋ z ) ⇔ (B ∋ z) ) → A ≈ B -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) - -- smaller : ZFSet → ZFSet - -- regularity : ( x : ZFSet ) → ¬ (x ≈ ∅) → smaller x ∩ x ≈ ∅ + smaller : ZFSet → ZFSet + regularity : ( x : ZFSet ) → ¬ (x ≈ ∅) → smaller x ∩ x ≈ ∅ -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite infinity : ( x : ZFSet ) → x ∈ infinite → ( x ∪ Restrict ( λ y → x ≈ y )) ∈ infinite @@ -91,6 +91,45 @@ Power : ( A : ZFSet ) → ZFSet Restrict : ( ZFSet → Set m ) → ZFSet infinite : ZFSet - field isZF : IsZF ZFSet _∋_ _≈_ ∅ _×_ Union Power Restrict infinite +module reguraliry-m {n m : Level } ( zf : ZF {m} {n} ) where + + open import Relation.Nullary + open import Data.Empty + open import Relation.Binary.PropositionalEquality + + _≈_ = ZF._≈_ zf + ZFSet = ZF.ZFSet + Restrict = ZF.Restrict zf + ∅ = ZF.∅ zf + _∩_ = ( IsZF._∩_ ) (ZF.isZF zf) + _∋_ = ZF._∋_ zf + replacement = IsZF.replacement ( ZF.isZF zf ) + + russel : ( x : ZFSet zf ) → x ≈ Restrict ( λ x → ¬ ( x ∋ x ) ) → ⊥ + russel x eq with x ∋ x + ... | x∋x with replacement ( λ x → ¬ ( x ∋ x )) x {!!} + ... | r1 = {!!} + + + + +data Nat : Set zero where + Zero : Nat + Suc : Nat → Nat + +prev : Nat → Nat +prev (Suc n) = n +prev Zero = Zero + +open import Relation.Binary.PropositionalEquality + + +-- data Transtive {n : Level } ( lv : Nat) : Set n where +-- Φ : lv ≡ Zero → Transtive lv +-- pair : (s : Transtive (prev lv) ) → (t : Transtive (prev lv) ) → Transtive lv + + + +