Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1420:836bcc102a2c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jul 2023 07:44:45 +0900 |
parents | 2da55d442e4f |
children | cdfe297f9a79 |
files | src/cardinal.agda |
diffstat | 1 files changed, 15 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sat Jul 01 06:19:03 2023 +0900 +++ b/src/cardinal.agda Sat Jul 01 07:44:45 2023 +0900 @@ -299,6 +299,10 @@ ... | a-g ax ¬ib = sym x=fy ... | next-gf t ix = sym x=fy + UC-iso11 : (x : Ordinal ) → (cx : odef (* (& (Image (& UC) {b} (Injection-⊆ UC⊆a f)))) x ) + → (ux : odef (* (& UC)) (Uf x cx)) → fU ( Uf x cx ) ux ≡ x + UC-iso11 x cx ux = subst (λ k → fU (Uf x cx) k ≡ x) ( HE.≅-to-≡ ( ∋-irr {* (& UC)} {_} (be08 cx) ux)) (UC-iso1 x cx) + CC0 : (x : Ordinal) → Set n CC0 x = gfImage x ∨ (¬ gfImage x) @@ -387,15 +391,18 @@ ... | case1 lt1 = ? ... | case2 lt1 = ? + ImageInject : {a b x : Ordinal } → {F : Injection a b} → (i j : odef (Image a F) x ) → IsImage.y i ≡ IsImage.y j + ImageInject {a} {b} {x} {F} i j = inject F _ _ (IsImage.ay i) (IsImage.ay j) (trans (sym (IsImage.x=fy i)) (IsImage.x=fy j)) + be72 : (x : Ordinal) (bx : odef (* b) x) → (cc1 : CC1 x) → h (be71 x bx cc1 ) (cc10 bx cc1) ≡ x - be72 x bx (case1 (x₁ @ record { y = y ; ay = ay ; x=fy = x=fy })) = subst (λ k → fU (Uf x (subst (λ k → odef k x) (sym *iso) x₁)) k ≡ x) - ? be76 where - be77 : odef (* (& UC)) (Uf x (subst (λ k → odef k x) (sym *iso) x₁)) ≅ be08 (subst (λ k → odef k x) (sym *iso) x₁) - be77 = ? - be76 : fU (Uf x (subst (λ k → odef k x) (sym *iso) x₁)) (be08 (subst (λ k → odef k x) (sym *iso) x₁)) ≡ x - be76 = UC-iso1 x (subst (λ k → odef k x) (sym *iso) x₁) - -- ... | case1 c1 = ? -- trans ? (UC-iso1 x (subst (λ k → odef k x) (sym *iso) x₁)) - -- ... | case2 c2 = ⊥-elim ( c2 ? ) + be72 x bx (case1 (x₁ @ record { y = y ; ay = ay ; x=fy = x=fy })) = UC-iso11 x be76 + (subst (λ k → odef k (IsImage.y (subst (λ k → odef k x) *iso be76))) (sym *iso) be77 ) where + be76 : odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) x + be76 = subst (λ k → odef k x) (sym *iso) x₁ + be78 : y ≡ IsImage.y (subst (λ k → odef k x) *iso be76) + be78 = ImageInject x₁ (subst (λ k → odef k x) *iso be76) + be77 : odef UC (IsImage.y (subst (λ k → odef k x) *iso be76)) + be77 = subst₂ (λ j k → odef j k ) *iso be78 ay be72 x bx (case2 x₁) with cc10 bx (case2 x₁) ... | case1 c1 = ⊥-elim ( x₁ ? ) ... | case2 c2 = trans ? (a-UC-iso1 x ? )