Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 801:8373b130ba41
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Aug 2022 14:35:12 +0900 |
parents | 06eedb0d26a0 |
children | 358c33d3a2bd |
files | src/zorn.agda |
diffstat | 1 files changed, 4 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Aug 08 14:20:26 2022 +0900 +++ b/src/zorn.agda Mon Aug 08 14:35:12 2022 +0900 @@ -288,7 +288,6 @@ sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) - supf≤x :{x : Ordinal } → z o≤ x → supf z ≡ supf x fcy<sup : {u w : Ordinal } → u o≤ z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf fcy<sup {u} {w} u≤z fc with SUP.x<sup (sup u≤z) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) @@ -516,10 +515,9 @@ m09 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 <= ZChain.supf zc b m09 {sup1} {z} s<b fcz = ZChain.order zc b<A s<b fcz - m10 : {y₁ : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) y₁ → (y₁ ≡ b) ∨ (y₁ << b) - m10 = {!!} m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab b<A record { x<sup = m10} } + m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab b<A + record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) uz ) } } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -540,10 +538,9 @@ m05 : b ≡ ZChain.supf zc b m05 = sym (ZChain.sup=u zc ab m09 record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} ) -- ZChain on x - m10 : {y₁ : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) (osuc b)) y₁ → (y₁ ≡ b) ∨ (y₁ << b) - m10 = {!!} m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab m09 record { x<sup = m10 } } + m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab m09 + record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} } --- --- the maximum chain has fix point of any ≤-monotonic function