Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1205:83ac320583f8
...
author | kono |
---|---|
date | Fri, 03 Mar 2023 10:42:58 +0800 |
parents | 4d894c166762 |
children | 2c7fb857f144 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 17 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Fri Mar 03 08:37:02 2023 +0800 +++ b/src/Tychonoff.agda Fri Mar 03 10:42:58 2023 +0800 @@ -43,7 +43,7 @@ -- FIP is UFL -- filter Base -record FBase (P : HOD )(X : Ordinal ) (u : Ordinal) : Set n where +record FBase (P : HOD ) (X : Ordinal ) (u : Ordinal) : Set n where field b x : Ordinal b⊆X : * b ⊆ * X @@ -93,21 +93,20 @@ ; <odmax = λ {x} lt → subst₂ (λ j k → j o< osuc k) &iso refl (⊆→o≤ (FBase.u⊆P lt)) } N⊆PP : {X : Ordinal } → (CSX : * X ⊆ CS TP) → (fp : fip CSX) → N CSX fp ⊆ Power P N⊆PP CSX fp nx b xb = FBase.u⊆P nx xb - -- filter base is not empty + -- filter base is not empty necessary for generating ultra filter nc : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → HOD - nc {X} 0<X CSX fip = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) ) where - e : HOD -- we have an element of X - e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) - Xe : odef (* X) (& e) - Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) + nc {X} 0<X CSX fip = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) -- an element of X N∋nc :{X : Ordinal} → (0<X : o∅ o< X) → (CSX : * X ⊆ CS TP) → (fip : fip CSX) → odef (N CSX fip) (& (nc 0<X CSX fip) ) - N∋nc {X} 0<X CSX fip = record { b = ? ; x = ? ; b⊆X = ? ; sb = ? ; u⊆P = ? ; x⊆u = ? } where + N∋nc {X} 0<X CSX fip = record { b = X ; x = & e ; b⊆X = λ x → x ; sb = gi Xe ; u⊆P = nn02 ; x⊆u = λ x → x } where e : HOD -- we have an element of X e = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) Xe : odef (* X) (& e) Xe = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X) ) nn01 = ODC.minimal O (* (& e)) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) (fip (gi Xe))) ) + nn02 : * (& (nc 0<X CSX fip)) ⊆ P + nn02 = subst (λ k → k ⊆ P ) (sym *iso) (cs⊆L TP (CSX Xe ) ) + 0<PP : o∅ o< & (Power P) 0<PP = subst (λ k → k o< & (Power P)) &iso ( c<→o< (subst (λ k → odef (Power P) k) (sym &iso) nn00 )) where nn00 : odef (Power P) o∅ @@ -172,8 +171,16 @@ -- uf01 : {X : Ordinal} (CSX : * X ⊆ CS TP) (fp : fip {X} CSX) {x : Ordinal} → odef (* X) x → odef (* x) (limit CSX fp) uf01 {X} CSX fp {x} xx with trio< o∅ X - ... | tri< 0<X ¬b ¬c = ? - ... | tri≈ ¬a 0=X ¬c = ? + ... | tri< 0<X ¬b ¬c = uf02 0<X CSX fp uf03 uf05 where + uf04 : Ordinal + uf04 = ? + uf06 : Ordinal + uf06 = ? + uf05 : odef (* uf04) uf06 + uf05 = ? + uf03 : Neighbor TP (limit CSX fp) uf04 + uf03 = record { u = ? ; ou = ? ; ux = ? ; v⊆P = ? ; u⊆v = ? } + ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬a (subst (λ k → o∅ o< k) &iso ( ∈∅< xx ))) ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP