Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 378:853ead1b56b8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 20 Jul 2020 17:22:16 +0900 |
parents | d735beee689a |
children | 7b6592f0851a |
files | OD.agda cardinal.agda |
diffstat | 2 files changed, 4 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 20 17:08:16 2020 +0900 +++ b/OD.agda Mon Jul 20 17:22:16 2020 +0900 @@ -340,9 +340,11 @@ d→∋ : ( a : HOD ) { x : Ordinal} → odef a x → a ∋ (ord→od x) d→∋ a lt = subst (λ k → odef a k ) (sym diso) lt +-- +-- If we have LEM, Replace' is equivalent to Replace +-- in-codomain' : (X : HOD ) → ((x : HOD) → X ∋ x → HOD) → OD in-codomain' X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ((lt : odef X y) → x ≡ od→ord (ψ (ord→od y ) (d→∋ X lt) )))) } - Replace' : (X : HOD) → ((x : HOD) → X ∋ x → HOD) → HOD Replace' X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → od→ord (ψ (ord→od y) (d→∋ X X∋y) ))) ∧ def (in-codomain' X ψ) x } ; odmax = rmax ; <odmax = rmax< } where @@ -497,22 +499,6 @@ lemma : ( (y : HOD) → ¬ (x =h= ψ y)) → ( (y : Ordinal) → ¬ odef X y ∧ (ord→od (od→ord x) =h= ψ (ord→od y)) ) lemma not y not2 = not (ord→od y) (subst (λ k → k =h= ψ (ord→od y)) oiso ( proj2 not2 )) -sup-c<' : {X x : HOD} → (ψ : (x : HOD) → X ∋ x → HOD) → X ∋ x → od→ord (ψ x ? ) o< (sup-o X (λ y X∋y → od→ord (ψ (ord→od y) ? ))) -sup-c<' {X} {x} ψ lt = subst (λ k → od→ord (ψ k ? ) o< _ ) oiso (sup-o< X lt ) -replacement←' : (X x : HOD) {ψ : (x : HOD) → X ∋ x → HOD} → X ∋ x → Replace' X ψ ∋ ψ x ? -replacement←' X x {ψ} lt = record { proj1 = sup-c<' {X} {x} ψ lt ; proj2 = lemma } where - lemma : def (in-codomain' X ψ) (od→ord (ψ x ? )) - lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = ? })) -replacement→' : (X x : HOD) → {ψ : (x : HOD) → X ∋ x → HOD} → (lt : Replace' X ψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y ? )) -replacement→' X x {ψ} lt = contra-position lemma (lemma2 (λ lt1 → ? )) where - lemma2 : ¬ ((y : Ordinal) → ¬ odef X y ∧ ((od→ord x) ≡ od→ord (ψ (ord→od y) ? ))) - → ¬ ((y : Ordinal) → ¬ odef X y ∧ (ord→od (od→ord x) =h= ψ (ord→od y) ? )) - lemma2 not not2 = not ( λ y d → not2 y (record { proj1 = proj1 d ; proj2 = lemma3 (proj2 d)})) where - lemma3 : {y : Ordinal } → (od→ord x ≡ od→ord (ψ (ord→od y) ? )) → (ord→od (od→ord x) =h= ψ (ord→od y) ? ) - lemma3 {y} eq = subst (λ k → ord→od (od→ord x) =h= k ) oiso (o≡→== eq ) - lemma : ( (y : HOD) → ¬ (x =h= ψ y ? )) → ( (y : Ordinal) → ¬ odef X y ∧ (ord→od (od→ord x) =h= ψ (ord→od y) ? ) ) - lemma not y not2 = not (ord→od y) (subst (λ k → k =h= ψ (ord→od y) ? ) oiso ( proj2 not2 )) - --- --- Power Set ---
--- a/cardinal.agda Mon Jul 20 17:08:16 2020 +0900 +++ b/cardinal.agda Mon Jul 20 17:22:16 2020 +0900 @@ -64,7 +64,7 @@ lemma : Ordinal → Ordinal → Ordinal lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → odef (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) lemma x y | p | no n = o∅ - lemma x y | p | yes f∋y = lemma2 ? where -- (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) + lemma x y | p | yes f∋y = lemma2 {!!} where -- (ODC.double-neg-eilm O ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) lemma2 : {p : Ordinal} → ord-pair p → Ordinal lemma2 (pair x1 y1) with ODC.decp O ( x1 ≡ x) lemma2 (pair x1 y1) | yes p = y1