Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 444:8c43e804581e
generic filter does not work
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 10 Mar 2022 17:58:15 +0900 |
parents | 3681cac8d6a8 |
children | 03292cc203e4 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 44 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Wed Mar 09 17:42:22 2022 +0900 +++ b/src/generic-filter.agda Thu Mar 10 17:58:15 2022 +0900 @@ -68,9 +68,43 @@ open CountableModel --- +b02 : {x : HOD} → o∅ o< & x → ¬ ( x =h= od∅ ) +b02 = ∅7 + +b07 : {x : HOD} → ¬ ( x =h= od∅ ) → o∅ o< & x +b07 {x} not with trio< o∅ (& x) +... | tri< a ¬b ¬c = a +... | tri≈ ¬a b ¬c = ⊥-elim ( not ( ≡o∅→=od∅ (sym b) )) +... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + +b08 : {a x : HOD} → ( a =h= od∅ ) → ¬ ( x ∈ a ) +b08 {a} {x} eq lt with trio< o∅ (& x) +... | tri< a₁ ¬b ¬c = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ {a} eq)) (ordtrans a₁ (c<→o< lt )) ) +... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ eq)) (subst (λ k → k o< & a) (sym b) (c<→o< lt ) )) +... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + +open _==_ + +b01 : {an bn : HOD} → o∅ o< & bn → &( bn ∩ an ) ≡ o∅ → o∅ o< &( bn \ an ) +b01 {an} {bn} 0<b ba=0 = b07 (b03 (b02 0<b) (≡o∅→=od∅ ba=0)) where + -- b =< a, ba=b + b04 : ( ( bn \ an ) =h= od∅ ) → ( bn ∩ an ) =h= bn + b04 b-a=0 = record { eq→ = b05 ; eq← = b06 } where + b05 : {x : Ordinal} → OD.def (od (bn ∩ an)) x → OD.def (od bn) x + b05 {x} p = proj1 p + b06 : {x : Ordinal} → OD.def (od bn) x → OD.def (od (bn ∩ an)) x + b06 {x} x∈b with ODC.∋-p O an (* x) + ... | yes y = ⟪ x∈b , subst (λ k → odef an k) &iso y ⟫ + ... | no n = ⊥-elim ( b08 {bn \ an} b-a=0 ⟪ subst ( λ k → odef bn k ) (sym &iso) x∈b , (λ y → n y) ⟫ ) + b03 : ¬ ( bn =h= od∅ ) → ( bn ∩ an ) =h= od∅ → ¬ ( ( bn \ an ) =h= od∅ ) + b03 b>0 ba=0 b-a=0 = ⊥-elim ( b>0 (==-trans (==-sym (b04 b-a=0 ))ba=0 )) + +b11 : {an bn x : HOD} → an ⊆ bn → ¬ ( x ∈ an ) → an ⊆ ( bn \ x ) +b11 = {!!} + -- -- a(n) = /\ { a | a ∈ m (n) ∧ m (n) ∈ Power P) } +-- A : (i : Nat) (P : HOD) (C : CountableModel P) → HOD A i P C = record { od = record { def = λ x → odef (Power P) (ctl→ C i) ∧ odef (* (ctl→ C i)) x } @@ -78,7 +112,7 @@ --- -- b(0) = p --- b(n+1) = if (b(n) ∩ a(n)) != ∅ then b(n) ∩ a(n) otherwise b(n) - a ( a ∈ ( b(n) - a(n)) from choice ) +-- b(n+1) = if (b(n) ∩ a(n)) != ∅ then b(n) ∩ a(n) otherwise b(n) - a ( a ∈ a(n) s.t. ( b(n) - a != ∅) from choice ) -- record BR : Set (suc n) where @@ -92,13 +126,16 @@ ... | yes _ = B P C i x lt ... | no _ with is-o∅ ( & (BR.b (B P C i x lt) ∩ A i P C ) ) ... | no ne = record { b = BR.b (B P C i x lt ) ∩ A i P C ; b>0 = ¬≡o∅< ne } -... | yes y = record { b = BR.b (B P C i x lt) \ (ODC.minimal O b03 (b02 (b01 (BR.b>0 (B P C i x lt)) y ))) ; b>0 = {!!} } where +... | yes y = record { b = BR.b (B P C i x lt) \ (ODC.minimal O b03 (b02 (b01 (BR.b>0 (B P C i x lt)) y ))) ; b>0 = b12 } where + -- b01 : {an bn : HOD} → o∅ o< & bn → &( bn ∩ an ) ≡ o∅ → o∅ o< &( bn \ an ) b03 : HOD b03 = BR.b (B P C i x lt) \ A i P C - b02 : {x : HOD} → o∅ o< & x → ¬ ( x =h= od∅ ) - b02 = ∅7 - b01 : {an bn : HOD} → o∅ o< & bn → &( bn ∩ an ) ≡ o∅ → o∅ o< &( bn \ an ) - b01 {an} {bn} 0<b ba=0 = {!!} + b09 : A i P C ⊆ BR.b (B P C i x lt) + b09 = {!!} + b10 : A i P C ⊆ ( BR.b (B P C i x lt) \ (ODC.minimal O b03 (b02 (b01 (BR.b>0 (B P C i x lt)) y ))) ) + b10 = {!!} + b12 : o∅ o< & ( BR.b (B P C i x lt) \ (ODC.minimal O b03 (b02 (b01 (BR.b>0 (B P C i x lt)) y ))) ) + b12 = {!!} B⊆ : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → (lt : o∅ o< & x) → BR.b (B P C (Suc i) x lt) ⊆ BR.b (B P C (Suc i) x lt)