Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 837:8ceaf3455601
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Aug 2022 08:19:09 +0900 |
parents | d72bcf8552bb |
children | 1a5bb940fceb |
files | src/zorn.agda |
diffstat | 1 files changed, 32 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Aug 23 15:47:50 2022 +0900 +++ b/src/zorn.agda Thu Aug 25 08:19:09 2022 +0900 @@ -350,6 +350,36 @@ → HasPrev A (UnionCF A f mf ay (ZChain.supf zc) z) b f ∨ IsSup A (UnionCF A f mf ay (ZChain.supf zc) z) ab → * a < * b → odef ((UnionCF A f mf ay (ZChain.supf zc) z)) b +initial-segment : ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) + {a b y : Ordinal} (ay : odef A y) (za : ZChain A f mf ay a ) (zb : ZChain A f mf ay b ) + → {z : Ordinal } → a o≤ b → z o≤ a + → ZChain.supf za z ≡ ZChain.supf zb z +initial-segment A f mf {a} {b} {y} ay za zb {z} a≤b z≤a = TransFinite0 { λ x → x o≤ a → ZChain.supf za x ≡ ZChain.supf zb x } ind z z≤a where + ind : (x : Ordinal) → ((z : Ordinal) → z o< x → z o≤ a → ZChain.supf za z ≡ ZChain.supf zb z ) → + x o≤ a → ZChain.supf za x ≡ ZChain.supf zb x + ind x prev x≤a = ? where + supfa = ZChain.supf za + supfb = ZChain.supf zb + zc10 : {w : Ordinal } → w o< z → UnionCF A f mf ay supfa w ≡ UnionCF A f mf ay supfb w + zc10 = ? + -- w o< z → supfa w ≡ supfb w + supa : SUP A (UnionCF A f mf ay supfa x) + supa = ZChain.sup za x≤a + supb : SUP A (UnionCF A f mf ay supfb x) + supb = ZChain.sup zb (OrdTrans x≤a a≤b) + zc13 : UnionCF A f mf ay supfa x ≡ UnionCF A f mf ay supfb x + zc13 = ? -- + -- if x is sup of UCF px (or Union o< x ) , then supfa x ≡ x supfb x + -- if x is not sup of UCF px (or Union o< x ) or HasPrev, UCF x ≡ UCF px (or Union o< x) + zc15 : {B : HOD} → (a b : SUP A B) → SUP.sup a ≡ SUP.sup b + zc15 = ? + zc14 : supfa x ≡ supfb x + zc14 = begin + supfa x ≡⟨ ? ⟩ + & (SUP.sup supa) ≡⟨ ? ⟩ + & (SUP.sup supb) ≡⟨ ? ⟩ + supfb x ∎ where open ≡-Reasoning + record Maximal ( A : HOD ) : Set (Level.suc n) where field maximal : HOD @@ -789,9 +819,9 @@ ysp = & (SUP.sup (ysup f mf ay)) - initial-segment : {a b z : Ordinal } → (a<x : a o< x) ( b<x : b o< x) → a o< b → z o≤ a + initial-segment0 : {a b z : Ordinal } → (a<x : a o< x) ( b<x : b o< x) → a o< b → z o≤ a → ZChain.supf (pzc (osuc a) (ob<x lim a<x )) z ≡ ZChain.supf (pzc (osuc b) (ob<x lim b<x )) z - initial-segment = ? + initial-segment0 = ? supf0 : Ordinal → Ordinal supf0 z with trio< z x