Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1219:91740267e62d
ZProduct
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 06 Mar 2023 12:29:15 +0900 |
parents | 362e43a1477c |
children | a8253c91f630 |
files | src/Tychonoff.agda src/ZProduct.agda |
diffstat | 2 files changed, 28 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Mon Mar 06 10:45:34 2023 +0900 +++ b/src/Tychonoff.agda Mon Mar 06 12:29:15 2023 +0900 @@ -446,7 +446,15 @@ ty10 : filter F ∋ ZFP p Q → ZFP p Q ⊆ ZFP q Q → filter F ∋ ZFP q Q ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq ty02 : {p q : HOD} → FPSet ∋ p → FPSet ∋ q → Power P ∋ (p ∩ q) → FPSet ∋ (p ∩ q) - ty02 = ? + ty02 {p} {q} record { z = zp ; az = azp ; x=ψz = x=ψzp } record { z = zq ; az = azq ; x=ψz = x=ψzq } Ppq + = FPSet∋zpq (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where + ty52 : filter F ∋ ZFP p Q + ty52 = ? + ty51 : filter F ∋ ( ZFP p Q ∩ ZFP q Q ) + ty51 = filter2 F ? ? ? + ty50 : filter F ∋ ZFP (p ∩ q) Q + ty50 = ? + UFP : ultra-filter FP UFP = record { proper = {!!} ; ultra = {!!} }
--- a/src/ZProduct.agda Mon Mar 06 10:45:34 2023 +0900 +++ b/src/ZProduct.agda Mon Mar 06 12:29:15 2023 +0900 @@ -224,3 +224,22 @@ ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) +ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B ) +proj1 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where + zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x + zfp00 (ab-pair ⟪ pa , pb ⟫ qx) = ⟪ ab-pair pa qx , ab-pair pb qx ⟫ + zfp01 : {x : Ordinal} → odef (ZFP A C ∩ ZFP B C) x → ZFProduct (A ∩ B) C x + zfp01 ⟪ p , q ⟫ = subst (λ k → ZFProduct (A ∩ B) C k) ? ( ab-pair (zfp02 ⟪ p , q ⟫ ) (zfp04 q) ) where + zfp02 : {x : Ordinal } → (acx : odef (ZFP A C ∩ ZFP B C) x) → odef (A ∩ B) (zπ1 (proj1 acx)) + zfp02 {.(& < * _ , * _ >)} ⟪ ab-pair {a} {b} ax bx , bcx ⟫ = ⟪ ax , zfp03 bcx ? ⟫ where + zfp03 : {x : Ordinal } → (bc : odef (ZFP B C) x) → x ≡ (& < * a , * b >) → odef B (zπ1 (ab-pair {A} {C} ax bx)) + zfp03 (ab-pair x x₁) eq = ? + zfp04 : {x : Ordinal } (acx : odef (ZFP B C) x )→ odef C (zπ2 acx) + zfp04 (ab-pair x x₁) = x₁ +proj2 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = ? ; eq← = ? } + + + + + +