Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1115:97f4a14d88ce
....
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Jan 2023 17:02:54 +0900 |
parents | ba3e053b85d4 |
children | 6386019deef1 |
files | src/Topology.agda |
diffstat | 1 files changed, 25 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 01 15:51:08 2023 +0900 +++ b/src/Topology.agda Sun Jan 01 17:02:54 2023 +0900 @@ -66,21 +66,18 @@ is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫ is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso xy)) --- OS = { U ⊂ X | ∀ x ∈ U → ∃ b ∈ B → x ∈ b ⊂ U } +-- OS = { U ⊂ L | ∀ x ∈ U → ∃ b ∈ P → x ∈ b ⊂ U } -record aBase (P : HOD) {u x : Ordinal} (ux : odef (* u) x) : Set n where +record Base (L P : HOD) (u x : Ordinal) : Set n where field b : Ordinal + u⊂L : * u ⊂ L sb : Subbase P b b⊆u : * b ⊆ * u bx : odef (* b) x -record Base (P : HOD) (u : Ordinal) : Set n where - field - ab : {x : Ordinal } → (ux : odef (* u) x ) → aBase P ux - -SO : (P : HOD) → HOD -SO P = record { od = record { def = λ x → Base P x } ; odmax = ? ; <odmax = ? } +SO : (L P : HOD) → HOD +SO L P = record { od = record { def = λ u → {x : Ordinal } → odef (* u) x → Base L P u x } ; odmax = ? ; <odmax = ? } record IsSubBase (L P : HOD) : Set (suc n) where field @@ -90,8 +87,26 @@ px : {x : HOD} → {lx : L ∋ x } → p lx ∋ x GeneratedTopogy : (L P : HOD) → IsSubBase L P → Topology L -GeneratedTopogy L P isb = record { OS = SO P ; OS⊆PL = ? - ; o∪ = ? ; o∩ = ? } +GeneratedTopogy L P isb = record { OS = SO L P ; OS⊆PL = tp00 + ; o∪ = tp02 ; o∩ = tp01 } where + tp00 : SO L P ⊆ Power L + tp00 {u} ou x ux with ou ux + ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = proj2 u⊂L (b⊆u bx) + tp01 : {p q : HOD} → SO L P ∋ p → SO L P ∋ q → SO L P ∋ (p ∩ q) + tp01 {p} {q} op oq {x} ux = record { b = b ; u⊂L = subst (λ k → k ⊂ L) (sym *iso) ul + ; sb = g∩ (Base.sb (op px)) (Base.sb (oq qx)) ; b⊆u = ? ; bx = ? } where + px : odef (* (& p)) x + px = subst (λ k → odef k x ) (sym *iso) ( proj1 (subst (λ k → odef k _ ) *iso ux ) ) + qx : odef (* (& q)) x + qx = subst (λ k → odef k x ) (sym *iso) ( proj2 (subst (λ k → odef k _ ) *iso ux ) ) + b : Ordinal + b = & (* (Base.b (op px)) ∩ * (Base.b (oq qx))) + ul : (p ∩ q) ⊂ L + ul = subst (λ k → k ⊂ L ) *iso ⟪ ? , (λ {z} pq → IsSubBase.P⊆PL isb ? _ pq ) ⟫ + tp02 : { q : HOD} → q ⊂ SO L P → SO L P ∋ Union q + tp02 {q} q⊂O {x} ux with subst (λ k → odef k x) *iso ux + ... | record { owner = y ; ao = qy ; ox = yx } with proj2 q⊂O qy yx + ... | record { b = b ; u⊂L = u⊂L ; sb = sb ; b⊆u = b⊆u ; bx = bx } = record { b = ? ; u⊂L = ? ; sb = ? ; b⊆u = ? ; bx = ? } -- covers