Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 573:9ec37757a5a5
... still remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 03 May 2022 00:59:52 +0900 |
parents | 427e36467a18 |
children | 9084a26445a7 |
files | src/zorn.agda |
diffstat | 1 files changed, 17 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon May 02 23:23:12 2022 +0900 +++ b/src/zorn.agda Tue May 03 00:59:52 2022 +0900 @@ -541,7 +541,9 @@ ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) ... | case2 b=sup = ⊥-elim ( ¬x=sup record { x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) - ... | no ¬ox = record { chain = Uz ; chain⊆A = Uz⊆A ; f-total = u-total ; f-next = u-next + ... | no ¬ox = {!!} where + UnionZ : ZChain A ay f mf supO x + UnionZ = record { chain = Uz ; chain⊆A = Uz⊆A ; f-total = u-total ; f-next = u-next ; initial = u-initial ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } where --- limit ordinal case record UZFChain (z : Ordinal) : Set n where -- Union of ZFChain from y which has maximality o< x field @@ -561,10 +563,22 @@ u-initial {z} u = ZChain.initial ( uzc u ) (UZFChain.chain∋z u) u-chain∋x : odef Uz y u-chain∋x = {!!} - Uz-mono : { a b : Ordinal } → (ua : odef Uz a) (ub : odef Uz b ) → a o< b → ZChain.chain (uzc ua) ⊆' ZChain.chain (uzc ub) - Uz-mono {a} {b} ua ub a<b ca = ZChain.is-max (uzc ub) (ZChain.chain∋x (uzc ub)) {!!} {!!} {!!} {!!} where + Uz-mono : { a b : Ordinal } → (ua : odef Uz a) (ub : odef Uz b ) → a o< b → b o< x → ZChain.chain (uzc ua) ⊆' ZChain.chain (uzc ub) + Uz-mono {a} {b} ua ub a<b b<x {i} uai = {!!} where z30 : odef A b z30 = (ZChain.chain⊆A (uzc ub) (UZFChain.chain∋z ub)) + supa : SUP A (ZChain.chain (uzc ua)) + supa = supP (ZChain.chain (uzc ua)) (ZChain.chain⊆A (uzc ua)) (ZChain.f-total (uzc ua)) + in-chain : HasPrev A (ZChain.chain (uzc ua)) (SUP.A∋maximal supa) f ∨ IsSup A (ZChain.chain (uzc ua)) (SUP.A∋maximal supa) + in-chain = {!!} + z31 : ZChain.chain (uzc ua) ∋ SUP.sup supa + z31 = ZChain.is-max (uzc ua) (ZChain.chain∋x (uzc ua)) {!!} (SUP.A∋maximal supa) {!!} {!!} + ai : odef A i + ai = ZChain.chain⊆A (uzc ua) uai + -- (ZChain.initial (uzc ua) uai) + z32 : IsSup A (ZChain.chain (uzc ub)) ai + z32 = record { x<sup = {!!} } + u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy = {!!} --- ux ⊆ uy ∨ uy ⊆ ux