Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 852:a28bb57c88e6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 06 Sep 2022 01:18:54 +0900 |
parents | 717b8c3f55c9 |
children | 2569ace27176 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Sep 05 21:54:55 2022 +0900 +++ b/src/zorn.agda Tue Sep 06 01:18:54 2022 +0900 @@ -771,6 +771,12 @@ ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = ⊥-elim ( o≤> z≤px c ) + supfx : {z : Ordinal } → z ≡ x → supf0 px ≡ supf1 px z + supfx {z} z=x with trio< z px + ... | tri< a ¬b ¬c = ⊥-elim ( o<¬≡ z=x (subst (λ k → z o< k ) (Oprev.oprev=x op) (ordtrans a <-osuc ))) + ... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ z=x (subst (λ k → k o< x ) (sym b) (pxo<x op))) + ... | tri> ¬a ¬b c = refl + supf∈A : {b : Ordinal} → b o≤ x → odef A (supf1 px b) supf∈A {b} b≤z with trio< b px ... | tri< a ¬b ¬c = proj1 ( ZChain.csupf zc (o<→≤ a )) @@ -894,10 +900,7 @@ ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt → IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } } csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay (supf1 px) (supf1 px b)) (supf1 px b) - csupf {b} b≤x = ⟪ zc01 , ch-is-sup u o≤-refl - record { fcy<sup = fcy<sup ; order = order ; supu=u = supu=u } fc ⟫ where - csupf0 : b o≤ px → odef (UnionCF A f mf ay supf0 (supf1 px b)) (supf1 px b) - csupf0 b≤px = subst (λ k → odef (UnionCF A f mf ay supf0 k) k ) (supf0=1 b≤px) ( ZChain.csupf zc b≤px ) + csupf {b} b≤x = zc05 where zc04 : (b o≤ px ) ∨ (b ≡ x ) zc04 with trio< b px ... | tri< a ¬b ¬c = case1 (o<→≤ a) @@ -905,29 +908,26 @@ ... | tri> ¬a ¬b px<b with osuc-≡< b≤x ... | case1 eq = case2 eq ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) - zc01 : odef A (supf1 px b) - zc01 = supf∈A b≤x - u = supf1 px b - supu=u : supf1 px u ≡ u - supu=u with zc04 - ... | case2 eq = begin - supf1 px u ≡⟨ ? ⟩ - supf0 px ≡⟨ ? ⟩ - u ∎ where open ≡-Reasoning - ... | case1 le = ? where - zc06 : b o≤ px - zc06 = le - zc02 : odef A (supf1 px u) - zc02 = subst (λ k → odef A k ) (sym supu=u) zc01 - zc03 : supf1 px u ≡ supf1 px b - zc03 = ? - fc : FClosure A f (supf1 px u) (supf1 px b) - fc = init zc02 zc03 - fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 px u) ∨ (z << supf1 px u) - fcy<sup = ? - order : {s z1 : Ordinal} → supf1 px s o< supf1 px u → FClosure A f (supf1 px s) z1 - → (z1 ≡ supf1 px u) ∨ (z1 << supf1 px u) - order = ? + zc05 : odef (UnionCF A f mf ay (supf1 px) (supf1 px b)) (supf1 px b) + zc05 with zc04 + ... | case2 b=x with ZChain.csupf zc o≤-refl + ... | ⟪ au , ch-init fc ⟫ = ⟪ subst (λ k → odef A k) (supfx b=x) au + , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supfx b=x) fc) ⟫ + ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supfx b=x) au + , ch-is-sup u (subst (λ k → u o≤ k) (supfx b=x) u≤x) ? zc06 ⟫ where + zc06 : FClosure A f (supf1 px u) (supf1 px b) + zc06 = ? + zc07 : FClosure A f (supf0 u) (supf0 px) + zc07 = fc + zc05 | case1 b≤px with ZChain.csupf zc b≤px + ... | ⟪ au , ch-init fc ⟫ = ⟪ subst (λ k → odef A k) (supf0=1 b≤px) au + , ch-init (subst₂ (λ j k → FClosure A f j k ) refl (supf0=1 b≤px) fc) ⟫ + ... | ⟪ au , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ subst (λ k → odef A k) (supf0=1 b≤px) au + , ch-is-sup u (subst (λ k → u o≤ k) (supf0=1 b≤px) u≤x) ? zc06 ⟫ where + zc06 : FClosure A f (supf1 px u) (supf1 px b) + zc06 = ? + zc07 : FClosure A f (supf0 u) (supf0 b) + zc07 = fc sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 px z ≡ & (SUP.sup (sup z≤x)) sis {z} z≤x = zc40 where zc40 : supf1 px z ≡ & (SUP.sup (sup z≤x)) -- direct with statment causes error