Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1171:a839fccdef47
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Jan 2023 20:15:15 +0900 |
parents | b2ca37e81ad0 |
children | f4bccbe80540 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 5 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Jan 22 20:04:57 2023 +0900 +++ b/src/Tychonoff.agda Sun Jan 22 20:15:15 2023 +0900 @@ -146,14 +146,14 @@ limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 ufl02 : {y : Ordinal } → odef (* (& CF)) y → odef (* y) limit ufl02 = FIP.is-limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 - ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ + ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ -- because limit is in CF which is a closure ufl03 {f} {v} ff nei fv=0 = ? pp : {v x : Ordinal} → Neighbor TP limit v → odef (* v) x → Power P ∋ (* x) pp {v} {x} nei vx z pz = ? ufl00 : {v : Ordinal} → Neighbor TP limit v → * v ⊆ filter F ufl00 {v} nei {x} fx with ultra-filter.ultra UF (pp nei fx) (NEG P (pp nei fx)) ... | case1 fv = subst (λ k → odef (filter F) k) &iso fv - ... | case2 nfv = ? + ... | case2 nfv = ? -- will contradicts ufl03 -- product topology of compact topology is compact @@ -189,11 +189,11 @@ Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) Pf = ? - neip : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TP p ? + neip : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TP (& p) ? neip = ? - neiq : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TQ q ? + neiq : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TQ (& q) ? neiq = ? - pq⊆F : {p q : HOD} → Neighbor TP p ? → Neighbor TP q ? → ? ⊆ filter F + pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → ? ⊆ filter F pq⊆F = ? isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → * v ⊆ filter F isL {v} npq {x} fx = ?