Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1172:f4bccbe80540
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Jan 2023 22:41:13 +0900 |
parents | a839fccdef47 |
children | 4b2f49a5a1d5 |
files | src/Topology.agda src/Tychonoff.agda |
diffstat | 2 files changed, 17 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 22 20:15:15 2023 +0900 +++ b/src/Topology.agda Sun Jan 22 22:41:13 2023 +0900 @@ -220,24 +220,24 @@ record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where field - p q : Ordinal + p : Ordinal op : odef (OS TP) p prod : x ≡ & (ZFP (* p) Q ) record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where field - p q : Ordinal + q : Ordinal oq : odef (OS TQ) q prod : x ≡ & (ZFP P (* q )) pbase⊆PL : {P Q : HOD} → (TP : Topology P) → (TQ : Topology Q) → {x : Ordinal } → BaseP TP Q x ∨ BaseQ P TQ x → odef (Power (ZFP P Q)) x -pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where +pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) tp01 w wz with subst (λ k → odef k w ) *iso wz ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where tp03 : odef P a tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa -pbase⊆PL {P} {Q} TP TQ {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where +pbase⊆PL {P} {Q} TP TQ {z} (case2 record { q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) tp01 w wz with subst (λ k → odef k w ) *iso wz ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where
--- a/src/Tychonoff.agda Sun Jan 22 20:15:15 2023 +0900 +++ b/src/Tychonoff.agda Sun Jan 22 22:41:13 2023 +0900 @@ -189,14 +189,22 @@ Pf : odef (ZFP P Q) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) Pf = ? - neip : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TP (& p) ? - neip = ? - neiq : {v : Ordinal} → {p q : HOD} → Neighbor (ProductTopology TP TQ) (& < p , q >) v → Neighbor TQ (& q) ? - neiq = ? pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → ? ⊆ filter F pq⊆F = ? isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → * v ⊆ filter F - isL {v} npq {x} fx = ? + isL {v} npq {x} fx = filter2 F ? ? ? where + neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F + neip = ? + neiq : {q : Ordinal } → ( bq : BaseQ P TQ q ) → * q ⊆ filter F + neiq = ? + bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u npq) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) + bpq = Neighbor.ou npq (Neighbor.ux npq) + pqb : Subbase (pbase TP TQ) (Base.b bpq ) + pqb = Base.sb bpq + base⊆F : {b : Ordinal } → Subbase (pbase TP TQ) b → * b ⊆ filter F + base⊆F (gi (case1 px)) bx = ? + base⊆F (gi (case2 qx)) bx = ? + base⊆F (g∩ b1 b2) bx = filter1 F ? ? ?