Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1173:4b2f49a5a1d5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 23 Jan 2023 10:20:55 +0900 |
parents | f4bccbe80540 |
children | 375615f9d60f |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 32 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Jan 22 22:41:13 2023 +0900 +++ b/src/Tychonoff.agda Mon Jan 23 10:20:55 2023 +0900 @@ -192,19 +192,42 @@ pq⊆F : {p q : HOD} → Neighbor TP (& p) (UFLP.limit uflp) → Neighbor TP (& q) (UFLP.limit uflq) → ? ⊆ filter F pq⊆F = ? isL : {v : Ordinal} → Neighbor (ProductTopology TP TQ) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) v → * v ⊆ filter F - isL {v} npq {x} fx = filter2 F ? ? ? where - neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F - neip = ? - neiq : {q : Ordinal } → ( bq : BaseQ P TQ q ) → * q ⊆ filter F - neiq = ? + isL {v} npq {x} fx = ? where bpq : Base (ZFP P Q) (pbase TP TQ) (Neighbor.u npq) (& < * (UFLP.limit uflp) , * (UFLP.limit uflq) >) bpq = Neighbor.ou npq (Neighbor.ux npq) pqb : Subbase (pbase TP TQ) (Base.b bpq ) pqb = Base.sb bpq - base⊆F : {b : Ordinal } → Subbase (pbase TP TQ) b → * b ⊆ filter F - base⊆F (gi (case1 px)) bx = ? - base⊆F (gi (case2 qx)) bx = ? - base⊆F (g∩ b1 b2) bx = filter1 F ? ? ? + pqb⊆opq : * (Base.b bpq) ⊆ * ( Neighbor.u npq ) + pqb⊆opq = Base.b⊆u bpq + base⊆F : {b : Ordinal } → Subbase (pbase TP TQ) b → * b ⊆ * (Neighbor.u npq) → * b ⊆ filter F + base⊆F (gi (case1 px)) b⊆u {z} bz = fz where + -- F contains no od∅, because it projection contains no od∅ + -- x is an element of BaseP, which is a subset of Neighbor npq + -- x is also an elment of Proj1 F because Proj1 F has UFLP (uflp) + -- BaseP ∩ F is not empty + -- (Base P ∩ F) ⊆ F , (Base P ) ⊆ F , + il1 : odef (Power P) z ∧ ZProj1 (filter F) z + il1 = UFLP.is-limit uflp ? bz + nei1 : HOD + nei1 = Proj1 (* (Neighbor.u npq)) (Power P) (Power Q) + plimit : Ordinal + plimit = UFLP.limit uflp ? + nproper : {b : Ordinal } → * b ⊆ nei1 → o∅ o< b + nproper = ? + b∋z : odef nei1 z + b∋z = ? + bp : BaseP {P} TP Q z + bp = record { b = ? ; op = ? ; prod = ? } + neip : {p : Ordinal } → ( bp : BaseP TP Q p ) → * p ⊆ filter F + neip = ? + il2 : * z ⊆ ZFP (Power P) (Power Q) + il2 = ? + il3 : filter F ∋ ? + il3 = ? + fz : odef (filter F) z + fz = subst (λ k → odef (filter F) k) &iso (filter1 F ? ? ?) + base⊆F (gi (case2 qx)) b⊆u {z} bz = ? + base⊆F (g∩ b1 b2) b⊆u {z} bz = ?