Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 233:af60c40298a4
function continue
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 12 Aug 2019 13:28:59 +0900 |
parents | cb6f025a991e |
children | e06b76e5b682 |
files | cardinal.agda |
diffstat | 1 files changed, 28 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Mon Aug 12 08:59:55 2019 +0900 +++ b/cardinal.agda Mon Aug 12 13:28:59 2019 +0900 @@ -24,28 +24,40 @@ -- we have to work on Ordinal to keep OD Level n -- since we use p∨¬p which works only on Level n -func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD -func→od f dom = Replace dom ( λ x → x , (ord→od (f (od→ord x) ))) +<_,_> : (x y : OD) → OD +< x , y > = (x , x ) , (x , y ) -record _⊗_ (A B : Ordinal) : Set n where +record SetProduct ( A B : OD ) (x : Ordinal ) : Set n where field π1 : Ordinal π2 : Ordinal - A∋π1 : def (ord→od A) π1 - B∋π2 : def (ord→od B) π2 + A∋π1 : def A π1 + B∋π2 : def B π2 + -- opair : x ≡ od→ord (Ord ( omax (omax π1 π1) (omax π1 π2) )) -- < π1 , π2 > + +open SetProduct --- Clearly wrong. We need ordered pair -Func : ( A B : OD ) → OD -Func A B = record { def = λ x → (od→ord A) ⊗ (od→ord B) } +_⊗_ : (A B : OD) → OD +A ⊗ B = record { def = λ x → SetProduct A B x } +-- A ⊗ B = record { def = λ x → (y z : Ordinal) → def A y ∧ def B z ∧ ( x ≡ od→ord (< ord→od y , ord→od z >) ) } + +-- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) -open _⊗_ +Func : ( A B : OD ) → OD +Func A B = record { def = λ x → def (Power (A ⊗ B)) x } + +-- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) -func←od : { dom cod : OD } → (f : OD ) → Func dom cod ∋ f → (Ordinal → Ordinal ) -func←od {dom} {cod} f lt x = sup-o ( λ y → lemma y ) where +func←od : { dom cod : OD } → {f : OD } → Func dom cod ∋ f → (Ordinal → Ordinal ) +func←od {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where lemma : Ordinal → Ordinal - lemma y with p∨¬p ( _⊗_.π1 lt ≡ x ) - lemma y | case1 refl = _⊗_.π2 lt - lemma y | case2 not = o∅ + lemma y with IsZF.power→ isZF (dom ⊗ cod) f lt + lemma y | p with double-neg-eilm ( p {ord→od y} {!!} ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) + ... | t = π2 t + +func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD +func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) + -- contra position of sup-o< -- @@ -68,7 +80,7 @@ ymap : Ordinal xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap - onto-iso : {y : Ordinal } → (lty : def Y y ) → func←od (ord→od xmap) xfunc ( func←od (ord→od ymap) yfunc y ) ≡ y + onto-iso : {y : Ordinal } → (lty : def Y y ) → func←od {!!} ( func←od {!!} y ) ≡ y open Onto @@ -88,7 +100,7 @@ xfunc1 = {!!} zfunc : def (Func Z X) zmap zfunc = {!!} - onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func←od (ord→od xmap1) xfunc1 ( func←od (ord→od zmap) zfunc z ) ≡ z + onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func←od {!!} ( func←od zfunc z ) ≡ z onto-iso1 = {!!}