Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1255:afecaee48825
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 16 Mar 2023 17:46:36 +0900 |
parents | abd86d493c61 |
children | 0b7e4eb68afc |
files | src/filter.agda src/generic-filter.agda |
diffstat | 2 files changed, 37 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Thu Mar 16 11:56:17 2023 +0900 +++ b/src/filter.agda Thu Mar 16 17:46:36 2023 +0900 @@ -156,7 +156,7 @@ ideal : HOD i⊆L : ideal ⊆ L ideal1 : { p q : HOD } → L ∋ q → ideal ∋ p → q ⊆ p → ideal ∋ q - ideal2 : { p q : HOD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) + ideal2 : { p q : HOD } → ideal ∋ p → ideal ∋ q → L ∋ (p ∩ q) → ideal ∋ (p ∪ q) open Ideal
--- a/src/generic-filter.agda Thu Mar 16 11:56:17 2023 +0900 +++ b/src/generic-filter.agda Thu Mar 16 17:46:36 2023 +0900 @@ -179,6 +179,23 @@ d⊆P : dense ⊆ L has-expansion : {p : HOD} → (Lp : L ∋ p) → Expansion L dense Lp +record GenericFilter1 {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where + field + genf : Ideal {L} {P} LP + generic : (D : Dense {L} {P} LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Ideal.ideal genf ) ≡ od∅ ) + +P-GenericFilter1 : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 + → (C : CountableModel ) → GenericFilter1 {L} {P} LP ( ctl-M C ) +P-GenericFilter1 P L p0 L⊆PP Lp0 C = record { + genf = record { ideal = PDHOD L p0 C ; i⊆L = x∈PP ; ideal1 = ideal1 ; ideal2 = ? } + ; generic = ? + } where + ideal1 : {p q : HOD} → L ∋ q → PDHOD L p0 C ∋ p → q ⊆ p → PDHOD L p0 C ∋ q + ideal1 {p} {q} Lq record { gr = gr ; pn<gr = pn<gr ; x∈PP = x∈PP } q⊆p = + record { gr = gr ; pn<gr = λ y qy → pn<gr y ? ; x∈PP = ? } where + gf00 : {y : Ordinal } → odef (* (& q)) y → odef (* (& q)) y + gf00 {y} qy = subst (λ k → odef k y ) ? (q⊆p (subst (λ k → odef k y) ? qy )) + record GenericFilter {L P : HOD} (LP : L ⊆ Power P) (M : HOD) : Set (Level.suc n) where field genf : Filter {L} {P} LP @@ -190,11 +207,8 @@ gideal2 : {p q : HOD} → (rgen ∋ p ) ∧ (rgen ∋ q) → rgen ∋ (p ∪ q) P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 - → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q )) -- L is a Boolean Algebra - → (UNI : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q )) - → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p))) → (C : CountableModel ) → GenericFilter {L} {P} LP ( ctl-M C ) -P-GenericFilter P L p0 L⊆PP Lp0 CAP UNI NEG C = record { +P-GenericFilter P L p0 L⊆PP Lp0 C = record { genf = record { filter = Replace (PDHOD L p0 C) (λ x → P \ x) ; f⊆L = gf01 ; filter1 = f1 ; filter2 = f2 } ; generic = λ D cd → subst (λ k → ¬ (Dense.dense D ∩ k) ≡ od∅ ) (sym gf00) (fdense D cd ) ; gideal1 = gideal1 @@ -205,7 +219,7 @@ f⊆PL : PDHOD L p0 C ⊆ L f⊆PL lt = x∈PP lt gf01 : Replace (PDHOD L p0 C) (λ x → P \ x) ⊆ L - gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) ) + gf01 {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef L k) (sym x=ψz) ? -- ( NEG (subst (λ k → odef L k) (sym &iso) (f⊆PL az)) ) gf141 : {xp xq : Ordinal } → (Pp : PDN L p0 C xp) (Pq : PDN L p0 C xq) → (* xp ∪ * xq) ⊆ P gf141 Pp Pq {x} (case1 xpx) = L⊆PP (PDN.x∈PP Pp) _ xpx gf141 Pp Pq {x} (case2 xqx) = L⊆PP (PDN.x∈PP Pq) _ xqx @@ -226,7 +240,7 @@ f1 : {p q : HOD} → L ∋ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ p → p ⊆ q → Replace (PDHOD L p0 C) (λ x → P \ x) ∋ q f1 {p} {q} L∋q record { z = z ; az = az ; x=ψz = x=ψz } p⊆q = record { z = _ - ; az = record { gr = gr az ; pn<gr = f04 ; x∈PP = NEG L∋q } ; x=ψz = f05 } where + ; az = record { gr = gr az ; pn<gr = f04 ; x∈PP = ? } ; x=ψz = f05 } where open ≡-Reasoning f04 : (y : Ordinal) → odef (* (& (P \ q))) y → odef (* (find-p L C (gr az ) (& p0))) y f04 y qy = PDN.pn<gr az _ (subst (λ k → odef k y ) f06 (f03 qy )) where @@ -253,24 +267,24 @@ gp = record { z = xp ; az = Pp ; x=ψz = peq } gq = record { z = xq ; az = Pq ; x=ψz = qeq } gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq)) - gf10 = record { gr = PDN.gr Pq ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where + gf10 = record { gr = PDN.gr Pq ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ? } where gf16 : gr Pp ≤ gr Pq gf16 = <to≤ a gf15 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pq) (& p0))) y gf15 y gpqy with subst (λ k → odef k y ) *iso gpqy ... | case1 xpy = p-monotonic L p0 C gf16 (PDN.pn<gr Pp y xpy ) ... | case2 xqy = PDN.pn<gr Pq _ xqy - ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∪ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = gf22 } ; x=ψz = gf23 } where + ... | tri≈ ¬a eq ¬c = record { z = & (* xp ∪ * xq) ; az = record { gr = gr Pp ; pn<gr = gf21 ; x∈PP = ? } ; x=ψz = gf23 } where gp = record { z = xp ; az = Pp ; x=ψz = peq } gq = record { z = xq ; az = Pq ; x=ψz = qeq } gf22 : odef L (& (* xp ∪ * xq)) - gf22 = UNI (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pp)) (subst (λ k → odef L k ) (sym &iso) (PDN.x∈PP Pq)) + gf22 = ? gf21 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y gf21 y xpqy with subst (λ k → odef k y) *iso xpqy ... | case1 xpy = PDN.pn<gr Pp _ xpy ... | case2 xqy = subst (λ k → odef (* (find-p L C k (& p0))) y ) (sym eq) ( PDN.pn<gr Pq _ xqy ) gf25 : odef L (& p) - gf25 = subst (λ k → odef L k ) (sym peq) ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) )) + gf25 = subst (λ k → odef L k ) (sym peq) ? -- ( NEG (subst (λ k → odef L k) (sym &iso) (PDN.x∈PP Pp) )) gf27 : {x : Ordinal} → odef p x → odef (P \ * xp) x gf27 {x} px = subst (λ k → odef k x) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) peq)) px -- gf02 : {P a b : HOD } → (P \ a) ∩ (P \ b) ≡ ( P \ (a ∪ b) ) @@ -280,7 +294,7 @@ gp = record { z = xp ; az = Pp ; x=ψz = peq } gq = record { z = xq ; az = Pq ; x=ψz = qeq } gf10 : odef (PDHOD L p0 C) (& (* xp ∪ * xq)) - gf10 = record { gr = PDN.gr Pp ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ( NEG L∋pq ) } where + gf10 = record { gr = PDN.gr Pp ; pn<gr = gf15 ; x∈PP = subst (λ k → odef L k) (cong (&) (gf131 gp gq)) ? } where gf16 : gr Pq ≤ gr Pp gf16 = <to≤ c gf15 : (y : Ordinal) → odef (* (& (* xp ∪ * xq))) y → odef (* (find-p L C (gr Pp) (& p0))) y @@ -366,7 +380,7 @@ ... | ⟪ Px , npz ⟫ = Px L∋gpr : {p : HOD } → GPR ∋ p → (L ∋ p) ∧ ( L ∋ (P \ p)) L∋gpr {p} record { z = zp ; az = record { z = z ; az = az ; x=ψz = x=ψzp } ; x=ψz = x=ψz } - = ⟪ subst (λ k → odef L k) fd40 (PDN.x∈PP az) , NEG (subst (λ k → odef L k) fd40 (PDN.x∈PP az)) ⟫ where + = ⟪ subst (λ k → odef L k) fd40 (PDN.x∈PP az) , ? ⟫ where fd41 : * z ⊆ P fd41 {x} lt = L⊆PP ( PDN.x∈PP az ) _ lt fd40 : z ≡ & p @@ -414,7 +428,7 @@ = record { z = _ ; az = gf31 ; x=ψz = cong (&) gf32 } where open ≡-Reasoning gf31 : GP ∋ ( (P \ p ) ∩ (P \ q ) ) - gf31 = f2 (gpr→gp gp) (gpr→gp gq) (CAP (proj2 (L∋gpr gp)) (proj2 (L∋gpr gq)) ) + gf31 = f2 (gpr→gp gp) (gpr→gp gq) ? -- (CAP (proj2 (L∋gpr gp)) (proj2 (L∋gpr gq)) ) gf33 : (p ∪ q) ⊆ P gf33 {x} (case1 px) = L⊆PP (proj1 (L∋gpr gp)) _ (subst (λ k → odef k x) (sym *iso) px ) gf33 {x} (case2 qx) = L⊆PP (proj1 (L∋gpr gq)) _ (subst (λ k → odef k x) (sym *iso) qx ) @@ -435,19 +449,16 @@ Lr : L ∋ r p⊆q : p ⊆ q p⊆r : p ⊆ r - ¬compat : (s : HOD) → ¬ ( (q ⊆ s) ∧ (r ⊆ s) ) + ¬compat : (s : HOD) → L ∋ s → ¬ ( (q ⊆ s) ∧ (r ⊆ s) ) lemma232 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) - → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q )) -- L is a Boolean Algebra - → (UNI : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q )) - → (NEG : ({p : HOD} → L ∋ p → L ∋ ( P \ p))) → (C : CountableModel ) → ctl-M C ∋ L → ( {p : HOD} → (Lp : L ∋ p ) → NotCompatible L p Lp ) - → ¬ ( ctl-M C ∋ rgen ( P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG C )) -lemma232 P L p0 LPP Lp0 CAP UNI NEG C ML NC MF = ¬rgf∩D=0 record { eq→ = λ {x} rgf∩D → ⊥-elim( proj2 (proj1 rgf∩D) (proj2 rgf∩D)) + → ¬ ( ctl-M C ∋ rgen ( P-GenericFilter P L p0 LPP Lp0 C )) +lemma232 P L p0 LPP Lp0 C ML NC MF = ¬rgf∩D=0 record { eq→ = λ {x} rgf∩D → ⊥-elim( proj2 (proj1 rgf∩D) (proj2 rgf∩D)) ; eq← = λ lt → ⊥-elim (¬x<0 lt) } where - PG = P-GenericFilter P L p0 LPP Lp0 CAP UNI NEG C + PG = P-GenericFilter P L p0 LPP Lp0 C GF = genf PG rgf = rgen PG M = ctl-M C @@ -469,6 +480,8 @@ q = NotCompatible.q (NC Lp) r : HOD r = NotCompatible.r (NC Lp) + Lq : L ∋ q + Lq = NotCompatible.Lq (NC Lp) exp1 : Expansion L D Lp exp1 with ODC.p∨¬p O (rgf ∋ q) ... | case2 ngq = record { expansion = q ; dense∋exp = ? ; p⊆exp = ? } @@ -476,7 +489,9 @@ ... | case2 ngr = record { expansion = q ; dense∋exp = ? ; p⊆exp = ? } ... | case1 gr = ⊥-elim ( ll02 ⟪ ? , ? ⟫ ) where ll02 : ¬ ( (q ⊆ p) ∧ (r ⊆ p) ) - ll02 = NotCompatible.¬compat (NC Lp) p + ll02 = NotCompatible.¬compat (NC Lp) p ? + ll05 : ¬ ( (q ⊆ (q ∪ r) ∧ (r ⊆ (q ∪ r)) )) + ll05 = NotCompatible.¬compat (NC Lp ) (q ∪ r) ? ll03 : rgf ∋ p → rgf ∋ q → rgf ∋ (p ∪ q) ll03 rp rq = gideal2 PG ⟪ rp , rq ⟫ ll04 : rgf ∋ p → q ⊆ p → rgf ∋ q