Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 413:b00d58b3dc57
generic filter on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 Jul 2020 08:15:56 +0900 |
parents | 38eded55c72d |
children | aa306f5dab9b |
files | generic-filter.agda |
diffstat | 1 files changed, 17 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Thu Jul 30 00:29:50 2020 +0900 +++ b/generic-filter.agda Thu Jul 30 08:15:56 2020 +0900 @@ -207,33 +207,39 @@ open PDN --- --- G as an HOD +-- G as a HOD -- PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD PDHOD C P = record { od = record { def = λ x → PDN C P x } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.px∈ω lt) } where --- --- p 0 ≡ ∅ --- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q ---- else p n - open PDN ---- --- Generic Filter on Power P for HOD's Ordinal +-- Generic Filter on Power P for HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. Nat → P → Set ) -- +-- p 0 ≡ ∅ +-- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q (axiom of choice) +--- else p n + P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P P-GenericFilter C P = record { genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} } where - find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (ord→od (find-p C P i x)) y → odef P y - find-p-⊆P C P Zero x y Py = {!!} - find-p-⊆P C P (Suc i) x y Py = {!!} -- find-p-⊆P C P i x {!!} + P∅ : {P : HOD} → odef (Power P) o∅ + P∅ {P} = subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅ o∅≡od∅) where + lemma : (x : Ordinal ) → ord→od x ≡ od∅ → odef (Power P) (od→ord od∅) + lemma x eq = power← P od∅ (λ {x} lt → ⊥-elim (¬x<0 lt )) + x<y→∋ : {x y : Ordinal} → odef (ord→od x) y → ord→od x ∋ ord→od y + x<y→∋ {x} {y} lt = subst (λ k → odef (ord→od x) k ) (sym diso) lt + find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (ord→od (find-p C P i x)) y → odef P y + find-p-⊆P C P Zero x y Px Py = subst (λ k → odef P k ) diso + ( incl (ODC.power→⊆ O P (ord→od x) (d→∋ (Power P) Px)) (x<y→∋ Py)) + find-p-⊆P C P (Suc i) x y Px Py = find-p-⊆P C P i (next-p C P i x) y {!!} {!!} f⊆PL : PDHOD C P ⊆ Power P f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → - find-p-⊆P C P (gr lt) o∅ (od→ord y) (pn<gr lt (od→ord y) (subst (λ k → odef k (od→ord y)) (sym oiso) y<x))) } + find-p-⊆P C P (gr lt) o∅ (od→ord y) P∅ (pn<gr lt (od→ord y) (subst (λ k → odef k (od→ord y)) (sym oiso) y<x))) } open GenericFilter