Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 932:b1899e33e2c7
memory exhaust work around
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Oct 2022 06:41:01 +0900 |
parents | 307ad8807963 |
children | 409ac0af7b3b |
files | src/zorn1.agda |
diffstat | 1 files changed, 14 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn1.agda Mon Oct 24 04:30:41 2022 +0900 +++ b/src/zorn1.agda Mon Oct 24 06:41:01 2022 +0900 @@ -413,9 +413,12 @@ chain = UnionCF A f mf ay supf z chain⊆A : chain ⊆' A chain⊆A = λ lt → proj1 lt + sup : {x : Ordinal } → x o≤ z → SUP A (UnionCF A f mf ay supf x) sup {x} x≤z = M→S supf (minsup x≤z) - -- supf-sup<minsup : {x : Ordinal } → (x≤z : x o≤ z) → & (SUP.sup (M→S supf (minsup x≤z) )) o≤ supf x ... supf-mono + + s=ms : {x : Ordinal } → (x≤z : x o≤ z ) → & (SUP.sup (sup x≤z)) ≡ MinSUP.sup (minsup x≤z) + s=ms {x} x≤z = &iso chain∋init : odef chain y chain∋init = ⟪ ay , ch-init (init ay refl) ⟫ @@ -648,11 +651,6 @@ → Tri (* ua < * ub) (* ua ≡ * ub) (* ub < * ua ) uz01 {ua} {ub} (zchain uza uca) (zchain uzb ucb) = chain-total A f mf ay supf (proj2 uca) (proj2 ucb) - usp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) - → ( supf : Ordinal → Ordinal ) - → SUP A (UnionZF f mf ay supf ) - usp0 f mf ay supf = supP (UnionZF f mf ay supf ) (λ lt → auzc f mf ay supf lt ) (uzctotal f mf ay supf ) - msp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {x y : Ordinal} (ay : odef A y) → (zc : ZChain A f mf ay x ) → MinSUP A (UnionCF A f mf ay (ZChain.supf zc) x) @@ -692,6 +690,8 @@ c : Ordinal c = & ( SUP.sup sp1 ) mc = MinSUP.sup msp1 + c=mc : c ≡ mc + c=mc = &iso z20 : mc << cf nmx mc z20 = proj1 (cf-is-<-monotonic nmx mc (MinSUP.asm msp1) ) asc : odef A (supf mc) @@ -731,24 +731,25 @@ -- z25 : {x : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc ) x → (x ≡ y ) ∨ (x << y ) -- z25 {x} (init au eq ) = ? -- sup c = x, cf y ≡ d, sup c =< d -- z25 (fsuc x lt) = ? -- cf (sup c) + sd=d : supf d ≡ d sd=d = ZChain.sup=u zc (MinSUP.asm spd) (o<→≤ d<A) ⟪ is-sup , not-hasprev ⟫ + sc<<sd : supf mc << supf d sc<<sd = ? - -- z21 = proj1 ( cf-is-<-monotonic nmx ? ? ) - sc<sd : supf mc o< supf d - sc<sd with osuc-≡< ( ZChain.supf-<= zc (case2 sc<<sd ) ) - -- ... | case1 eq = ⊥-elim ( <-irr (case1 (subst₂ (λ j k → j ≡ k ) ? ? (cong (*) eq) )) sc<<sd ) - ... | case1 eq = ⊥-elim ( <-irr (case1 (cong (*) eq)) sc<<sd ) + + sc<sd : {mc d : Ordinal } → supf mc << supf d → supf mc o< supf d + sc<sd {mc} {d} sc<<sd with osuc-≡< ( ZChain.supf-<= zc (case2 sc<<sd ) ) + ... | case1 eq = ⊥-elim ( <-irr (case1 (cong (*) (sym eq) )) sc<<sd ) ... | case2 lt = lt sms<sa : supf mc o< supf (& A) sms<sa with osuc-≡< ( ZChain.supf-mono zc (o<→≤ ( ∈∧P→o< ⟪ MinSUP.asm msp1 , lift true ⟫) )) ... | case2 lt = lt - ... | case1 eq = ⊥-elim ( o<¬≡ eq ( ordtrans<-≤ sc<sd ( ZChain.supf-mono zc (o<→≤ d<A )))) + ... | case1 eq = ⊥-elim ( o<¬≡ eq ( ordtrans<-≤ (sc<sd sc<<sd ) ( ZChain.supf-mono zc (o<→≤ d<A )))) ss<sa : supf c o< supf (& A) - ss<sa = ? + ss<sa = subst (λ k → supf k o< supf (& A)) (sym c=mc) sms<sa zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM