Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 591:b3584dd8bafc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 Jun 2022 12:20:16 +0900 |
parents | 4dbaa071d695 |
children | f48c9f4bafdb |
files | src/zorn.agda |
diffstat | 1 files changed, 39 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jun 11 18:33:12 2022 +0900 +++ b/src/zorn.agda Sun Jun 12 12:20:16 2022 +0900 @@ -239,7 +239,7 @@ field sup : Ordinal B∋sup : odef B sup - issup : {y : Ordinal} → odef B y → (x ≡ y ) ∨ (y << x ) + issup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) minsup : {z : Ordinal} → (za : odef A z) → IsSup A B za → sup o≤ z fc : FClosure A f sup x @@ -257,7 +257,7 @@ → HasPrev A chain ab f ∨ IsSup A chain ab → * a < * b → odef chain b fc∨sup : {a : Ordinal } → ( ca : odef chain a ) → IsMinSup A chain f ( chain⊆A ca) - sup≤x : {a : Ordinal } → ( ca : odef chain a ) → IsMinSup.sup (fc∨sup ca) o≤ x + sup≤z : {a : Ordinal } → ( ca : odef chain a ) → IsMinSup.sup (fc∨sup ca) o≤ z record Maximal ( A : HOD ) : Set (Level.suc n) where field @@ -586,23 +586,45 @@ → ((c : Ordinal) → c o< a → c o< b → (za : ZChain A y f c) (zb : ZChain A y f b) → chain za ⊆' chain zb) → a o< b → (za : ZChain A y f a) (zb : ZChain A y f b) → chain za ⊆' chain zb uind a previ a<b za zb {i} zai = um01 (IsMinSup.fc (fc∨sup za zai)) where - um01 : {i : Ordinal} → FClosure A f (IsMinSup.sup (fc∨sup za zai)) i → odef (chain zb) i + um01 : {j : Ordinal} → FClosure A f (IsMinSup.sup (fc∨sup za zai)) j → odef (chain zb) j um01 (fsuc x t) = f-next zb (um01 t) - um01 {j} (init s j=minsup ) with trio< j b - ... | tri> ¬a ¬b b<j = {!!} - ... | tri≈ ¬a b=j ¬c = {!!} - ... | tri< j<b ¬b ¬c = previ j j<a j<b {!!} zb {!!} + um01 {j} (init as j=minsup ) with trio< j y + ... | tri< j<y ¬b ¬c = {!!} + ... | tri≈ ¬a j=y ¬c = {!!} + ... | tri> ¬a ¬b j>y = um10 where - zj : ZChain A y f j - zj = prev (osuc j) j<x ay - um10 : j ≡ IsMinSup.sup (fc∨sup za zai) - um10 = j=minsup - -- zcj : odef (chain zj ) j - -- zcj = ZChain.is-max zj {!!} {!!} {!!} (case2 ?) {!!} - j<a : j o< a - j<a = {!!} - -- um00 : odef (chain zb) j - -- um00 = previ (osuc j) {!!} {!!} zj zb zcj + aj : odef A j + aj = subst (λ k → odef A k ) (sym j=minsup) as + zj : odef (chain za) j + zj = subst (λ k → odef (chain za) k ) (sym j=minsup) ( IsMinSup.B∋sup (fc∨sup za zai) ) + j<a : j o< a + j<a = {!!} + um04 : j o< osuc b + um04 = {!!} + j<x : j o< x + j<x = {!!} + j<b : j o< b + j<b = {!!} + um05 : odef (chain (prev j j<x ay)) y + um05 = {!!} + um03 : * y < * j + um03 with initial za zj + ... | case1 eq = {!!} + ... | case2 lt = lt + um09 : odef (chain (prev j j<x ay)) j + um09 = {!!} + um06 : IsSup A (chain (prev j j<x ay)) aj + um06 = record { x<sup = λ {c} pc → um07 pc } where + um08 : ZChain A y f j + um08 = prev j j<x ay + um07 : {c : Ordinal} → odef (chain (prev j j<x ay)) c → (c ≡ j) ∨ (c << j) + um07 {c} pc = {!!} where + um11 : odef (chain za) c + um11 = ? + um10 : (c ≡ i) ∨ (c << i) + um10 = IsMinSup.issup (fc∨sup za zai) um11 + um10 : odef (chain zb) j + um10 = previ j j<a {!!} (prev j j<x ay ) zb um09 -- (is-max (prev j j<x ay ) um05 <-osuc aj (case2 um06) um03 ) u-total : IsTotalOrderSet Uz u-total {x} {y} ux uy = {!!} --- ux ⊆ uy ∨ uy ⊆ ux