Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 135:b60b6e8a57b0
otrans in repl
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2019 00:51:12 +0900 |
parents | b52683497a27 |
children | 3cc848664a86 |
files | HOD.agda |
diffstat | 1 files changed, 14 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Sun Jul 07 00:31:15 2019 +0900 +++ b/HOD.agda Sun Jul 07 00:51:12 2019 +0900 @@ -234,7 +234,11 @@ csuc x = Ord ( osuc ( od→ord x )) in-codomain : {n : Level} → (X : HOD {suc n} ) → ( ψ : HOD {suc n} → HOD {suc n} ) → HOD {suc n} -in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) } +in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) + ; otrans = lemma } where + lemma : {x : Ordinal} → ¬ ((y : Ordinal) → ¬ def X y ∧ (x ≡ od→ord (ψ (Ord y)))) → + {y : Ordinal} → y o< x → ¬ ((y₁ : Ordinal) → ¬ def X y₁ ∧ (y ≡ od→ord (ψ (Ord y₁)))) + lemma {x} notx {y} y<x noty = {!!} -- Power Set of X ( or constructible by λ y → def X (od→ord y ) @@ -299,7 +303,12 @@ ; isZF = isZF } where Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} - Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } + Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x ; + otrans = lemma } where + lemma : {x : Ordinal} → (x o< sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∧ def (in-codomain X ψ) x → + {y : Ordinal} → y o< x → (y o< sup-o (λ x₁ → od→ord (ψ (ord→od x₁)))) ∧ def (in-codomain X ψ) y + lemma {x} repl {y} y<x = record { proj1 = ordtrans y<x (proj1 repl) + ; proj2 = otrans (in-codomain X ψ) (proj2 repl) y<x } Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → Set (suc n) ) → HOD {suc n} Select X ψ = record { def = λ x → ((y : Ordinal {suc n} ) → X ∋ ord→od y → ψ (ord→od y)) ∧ (X ∋ ord→od x ) ; otrans = lemma } where lemma : {x : Ordinal} → ((y : Ordinal) → X ∋ ord→od y → ψ (ord→od y)) ∧ (X ∋ ord→od x) → @@ -345,8 +354,8 @@ ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} - ; replacement← = {!!} - ; replacement→ = {!!} + ; replacement← = replacement← + ; replacement→ = replacement→ } where pair : (A B : HOD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) @@ -418,14 +427,10 @@ power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ = {!!} power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A = def-subst {suc n} {Replace (Def (Ord a)) ψ} {_} {Power A} {od→ord t} {!!} {!!} lemma1 where + power← A t t→A = {!!} where a = od→ord A ψ : HOD → HOD ψ y = Def (Ord a) ∩ y - lemma1 : od→ord (Def (Ord a) ∩ t) ≡ od→ord t - lemma1 = {!!} - lemma2 : Ord ( sup-o ( λ x → od→ord (ψ (ord→od x )))) ≡ Power A - lemma2 = {!!} union-u : {X z : HOD {suc n}} → (U>z : Union X ∋ z ) → HOD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) )