Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 239:b6d80eec5f9e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 20 Aug 2019 10:36:37 +0900 (2019-08-20) |
parents | a8c6239176db |
children | c76c812de395 |
files | cardinal.agda |
diffstat | 1 files changed, 22 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Mon Aug 19 11:39:46 2019 +0900 +++ b/cardinal.agda Tue Aug 20 10:36:37 2019 +0900 @@ -33,13 +33,13 @@ ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } -π1' : { p : OD } → ZFProduct ∋ p → OD -π1' lt = ord→od (pi1 lt) where +π1 : { p : OD } → ZFProduct ∋ p → Ordinal +π1 lt = pi1 lt where pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y ) = x -π2' : { p : OD } → ZFProduct ∋ p → OD -π2' lt = ord→od (pi2 lt) where +π2 : { p : OD } → ZFProduct ∋ p → Ordinal +π2 lt = pi2 lt where pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y @@ -52,25 +52,15 @@ ∎ ) - -record SetProduct ( A B : OD ) : Set n where - field - π1 : Ordinal - π2 : Ordinal - A∋π1 : def A π1 - B∋π2 : def B π2 - -- opair : x ≡ od→ord (Ord ( omax (omax π1 π1) (omax π1 π2) )) -- < π1 , π2 > - -open SetProduct - ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no t _⊗_ : (A B : OD) → OD -A ⊗ B = record { def = λ x → SetProduct A B } --- A ⊗ B = record { def = λ x → (y z : Ordinal) → def A y ∧ def B z ∧ ( x ≡ od→ord (< ord→od y , ord→od z >) ) } +A ⊗ B = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } where + checkAB : { p : Ordinal } → def ZFProduct p → Set n + checkAB (pair x y) = def A x ∧ def B y -- Power (Power ( A ∪ B )) ∋ ( A ⊗ B ) @@ -79,16 +69,6 @@ -- power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x) -func←od : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal ) -func←od {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where - lemma : Ordinal → Ordinal - lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) - lemma y | p | no n = o∅ - lemma y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) - ... | t with decp ( x ≡ π1 t ) - ... | yes _ = π2 t - ... | no _ = o∅ - func→od : (f : Ordinal → Ordinal ) → ( dom : OD ) → OD func→od f dom = Replace dom ( λ x → < x , ord→od (f (od→ord x)) > ) @@ -98,14 +78,25 @@ func-1 : Ordinal → Ordinal func→od∈Func-1 : (Func dom (Ord (sup-o (λ x → func-1 x)) )) ∋ func→od func-1 dom +od→func : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal ) +od→func {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where + lemma2 : {p : Ordinal} → ord-pair p → Ordinal + lemma2 (pair x1 y1) with decp ( x1 ≡ x) + lemma2 (pair x1 y1) | yes p = y1 + lemma2 (pair x1 y1) | no ¬p = o∅ + lemma : Ordinal → Ordinal + lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) + lemma y | p | no n = o∅ + lemma y | p | yes f∋y = lemma2 (proj1 (double-neg-eilm ( p {ord→od y} f∋y ))) -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) + func←od1 : { dom cod : OD } → {f : Ordinal } → (f<F : def (Func dom cod ) f ) → Func←cd {dom} {cod} {f} f<F func←od1 {dom} {cod} {f} lt = record { func-1 = λ x → sup-o ( λ y → lemma x y ) ; func→od∈Func-1 = {!!} } where lemma : Ordinal → Ordinal → Ordinal lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) lemma x y | p | no n = o∅ lemma x y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) - ... | t with decp ( x ≡ π1 t ) - ... | yes _ = π2 t + ... | t with decp ( x ≡ π1 {!!} ) + ... | yes _ = π2 {!!} ... | no _ = o∅ func→od∈Func : (f : Ordinal → Ordinal ) ( dom : OD ) → (Func dom (Ord (sup-o (λ x → f x)) )) ∋ func→od f dom @@ -133,7 +124,7 @@ xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : def Y y ) → - func←od {X} {Y} {xmap} xfunc ( func←od yfunc y ) ≡ y + od→func {X} {Y} {xmap} xfunc ( od→func yfunc y ) ≡ y open Onto @@ -153,7 +144,7 @@ xfunc1 = {!!} zfunc : def (Func Z X) zmap zfunc = {!!} - onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func←od xfunc1 ( func←od zfunc z ) ≡ z + onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → od→func xfunc1 ( od→func zfunc z ) ≡ z onto-iso1 = {!!}