Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 240:c76c812de395
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 Aug 2019 16:43:29 +0900 |
parents | b6d80eec5f9e |
children | ccc84f289c98 |
files | cardinal.agda |
diffstat | 1 files changed, 15 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Tue Aug 20 10:36:37 2019 +0900 +++ b/cardinal.agda Wed Aug 21 16:43:29 2019 +0900 @@ -78,29 +78,24 @@ func-1 : Ordinal → Ordinal func→od∈Func-1 : (Func dom (Ord (sup-o (λ x → func-1 x)) )) ∋ func→od func-1 dom -od→func : { dom cod : OD } → {f : Ordinal } → def (Func dom cod ) f → (Ordinal → Ordinal ) -od→func {dom} {cod} {f} lt x = sup-o ( λ y → lemma y ) where - lemma2 : {p : Ordinal} → ord-pair p → Ordinal - lemma2 (pair x1 y1) with decp ( x1 ≡ x) - lemma2 (pair x1 y1) | yes p = y1 - lemma2 (pair x1 y1) | no ¬p = o∅ - lemma : Ordinal → Ordinal - lemma y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) - lemma y | p | no n = o∅ - lemma y | p | yes f∋y = lemma2 (proj1 (double-neg-eilm ( p {ord→od y} f∋y ))) -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) - -func←od1 : { dom cod : OD } → {f : Ordinal } → (f<F : def (Func dom cod ) f ) → Func←cd {dom} {cod} {f} f<F -func←od1 {dom} {cod} {f} lt = record { func-1 = λ x → sup-o ( λ y → lemma x y ) ; func→od∈Func-1 = {!!} } where +od→func : { dom cod : OD } → {f : Ordinal } → (f<F : def (Func dom cod ) f ) → Func←cd {dom} {cod} {f} f<F +od→func {dom} {cod} {f} lt = record { func-1 = λ x → sup-o ( λ y → lemma x y ) ; func→od∈Func-1 = record { proj1 = {!!} ; proj2 = {!!} } } where lemma : Ordinal → Ordinal → Ordinal lemma x y with IsZF.power→ isZF (dom ⊗ cod) (ord→od f) (subst (λ k → def (Power (dom ⊗ cod)) k ) (sym diso) lt ) | ∋-p (ord→od f) (ord→od y) lemma x y | p | no n = o∅ - lemma x y | p | yes f∋y with double-neg-eilm ( p {ord→od y} f∋y ) -- p : {x : OD} → f ∋ x → ¬ ¬ (dom ⊗ cod ∋ x) - ... | t with decp ( x ≡ π1 {!!} ) - ... | yes _ = π2 {!!} - ... | no _ = o∅ + lemma x y | p | yes f∋y = lemma2 (proj1 (double-neg-eilm ( p {ord→od y} f∋y ))) where -- p : {y : OD} → f ∋ y → ¬ ¬ (dom ⊗ cod ∋ y) + lemma2 : {p : Ordinal} → ord-pair p → Ordinal + lemma2 (pair x1 y1) with decp ( x1 ≡ x) + lemma2 (pair x1 y1) | yes p = y1 + lemma2 (pair x1 y1) | no ¬p = o∅ + + +open Func←cd func→od∈Func : (f : Ordinal → Ordinal ) ( dom : OD ) → (Func dom (Ord (sup-o (λ x → f x)) )) ∋ func→od f dom -func→od∈Func f dom = record { proj1 = {!!} ; proj2 = {!!} } +func→od∈Func f dom = record { proj1 = {!!} ; proj2 = {!!} } where + lemma : (Func dom (Ord (sup-o (λ x → f x)) )) ∋ func→od f dom + lemma = {!!} -- func→od∈Func-1 ( od→func {dom} {{!!}} {od→ord (func→od f {!!} )} {!!} ) -- contra position of sup-o< -- @@ -124,7 +119,7 @@ xfunc : def (Func X Y) xmap yfunc : def (Func Y X) ymap onto-iso : {y : Ordinal } → (lty : def Y y ) → - od→func {X} {Y} {xmap} xfunc ( od→func yfunc y ) ≡ y + func-1 ( od→func {X} {Y} {xmap} xfunc ) ( func-1 (od→func yfunc) y ) ≡ y open Onto @@ -144,7 +139,7 @@ xfunc1 = {!!} zfunc : def (Func Z X) zmap zfunc = {!!} - onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → od→func xfunc1 ( od→func zfunc z ) ≡ z + onto-iso1 : {z : Ordinal } → (ltz : def Z z ) → func-1 (od→func xfunc1 ) (func-1 (od→func zfunc ) z ) ≡ z onto-iso1 = {!!}