Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1111:b77a7f724663
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Dec 2022 22:04:23 +0900 |
parents | 7fb6950b50f1 |
children | fc3eea0d895d |
files | src/Topology.agda |
diffstat | 1 files changed, 23 insertions(+), 58 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Dec 31 19:30:54 2022 +0900 +++ b/src/Topology.agda Sat Dec 31 22:04:23 2022 +0900 @@ -62,24 +62,32 @@ Subbases : (P : HOD) → HOD Subbases P = record { od = record { def = λ x → Subbase P x } ; odmax = ? ; <odmax = ? } -record Base (P : HOD) (x : Ordinal) : Set n where - field - b : Ordinal - pb : odef (Power (Subbases P) ) b - bx : odef (* b) x +sbp : (P : HOD) {x : Ordinal } → Subbase P x → Ordinal +sbp P {x} (gi {y} px) = x +sbp P {.(& (* _ ∩ * _))} (g∩ sb sb₁) = sbp P sb -GeneratedTop : (P : HOD) → HOD -GeneratedTop P = record { od = record { def = λ x → Base P x } ; odmax = & P ; <odmax = ? } +is-sbp : (P : HOD) {x y : Ordinal } → (px : Subbase P x) → odef (* x) y → odef P (sbp P px ) ∧ odef (* (sbp P px)) y +is-sbp P {x} (gi px) xy = ⟪ px , xy ⟫ +is-sbp P {.(& (* _ ∩ * _))} (g∩ {x} {y} px px₁) xy = is-sbp P px (proj1 (subst (λ k → odef k _ ) *iso xy)) -record IsBase (L P : HOD) : Set (suc n) where +record IsSubBase (L P : HOD) : Set (suc n) where field - p : {x : HOD} → L ∋ x → HOD - in-P : {x : HOD} → (lx : L ∋ x ) → P ∋ p lx - b∩ : {x y : HOD} → (bx : P ∋ x ) (by : P ∋ y ) → HOD - b∩⊂ : {x y z : HOD} → {bx : P ∋ x } {by : P ∋ y } → ( x ∩ y ) ∋ z → ( b∩ bx by ∋ x ) ∧ ( b∩ bx by ⊆ ( x ∩ y ) ) + P⊆PL : P ⊆ Power L + p : {x : HOD} → L ∋ x → HOD + in-P : {x : HOD} → {lx : L ∋ x } → P ∋ p lx + px : {x : HOD} → {lx : L ∋ x } → p lx ∋ x -GeneratedIsTopogy : (P L : HOD) → IsBase L P → Topology L -GeneratedIsTopogy = ? +GeneratedTopogy : (L P : HOD) → IsSubBase L P → Topology L +GeneratedTopogy L P isb = record { OS = Subbases P ; OS⊆PL = OS⊆PL0 ; o∪ = tp01 ; o∩ = ? } where + OS⊆PL0 : Subbases P ⊆ Power L + OS⊆PL0 (gi px) z xz = IsSubBase.P⊆PL isb px _ xz + OS⊆PL0 (g∩ {x} {y} px py) z xz = IsSubBase.P⊆PL isb (proj1 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) _ + (proj2 (is-sbp P px (proj1 (subst (λ k → odef k z) *iso xz )) )) + tp01 : {Q : HOD} → Q ⊆ Subbases P → Subbases P ∋ Union Q + tp01 {q} qp = ε-induction0 { λ x → x ⊆ Subbases P → Subbases P ∋ Union x } tp02 q qp where + tp02 : {x : HOD} → ({y : HOD} → x ∋ y → y ⊆ Subbases P → Subbases P ∋ Union y) → x ⊆ Subbases P → Subbases P ∋ Union x + tp02 {x} prev xp = gi ? + -- covers @@ -142,51 +150,8 @@ base : {P Q : HOD} → Topology P → Topology Q → HOD base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } -POS : {P Q : HOD} → Topology P → Topology Q → HOD -POS {P} {Q} TP TQ = GeneratedTop (base TP TQ) - -PU : {A B : HOD} → Power A ∋ B → Power A ∋ Union B -PU = ? - _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) -_Top⊗_ {P} {Q} TP TQ = record { - OS = POS TP TQ - ; OS⊆PL = tp10 - ; o∪ = tp13 - ; o∩ = tp14 - } where - -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) - -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) - tp11 : {x z : Ordinal } → Subbase (base TP TQ) z → odef (* z) x → ZFProduct P Q x - tp11 {x} {z} (gi (case1 record { p = p ; q = q ; op = op ; prod = z=zfp })) zx = tp12 where - tp12 : ZFProduct P Q x - tp12 with subst (λ k → odef k x) (trans (cong (*) z=zfp) *iso) zx - ... | ab-pair pa qb = ZFP→ - (os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op ) (subst (λ k → odef (* p) k) (sym &iso) pa) ) - (subst (λ k → odef Q k ) (sym &iso) qb ) - tp11 {x} {z} (gi (case2 record { p = p ; q = q ; oq = oq ; prod = z=zfp })) zx = tp12 where - tp12 : ZFProduct P Q x - tp12 with subst (λ k → odef k x) (trans (cong (*) z=zfp) *iso) zx - ... | ab-pair pa qb = ZFP→ - (subst (λ k → odef P k ) (sym &iso) pa ) - ((os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq )) (subst (λ k → odef (* q) k) (sym &iso) qb) ) - tp11 {x} (g∩ {a} {b} sb sb₁) zx = tp11 sb (proj1 (subst (λ k → odef k x) *iso zx )) - tp10 : POS TP TQ ⊆ Power (ZFP P Q) - tp10 {x} record { b = b ; pb = pb ; bx = bx } z xz = tp11 (pb _ bx) xz - tp13 : {U : HOD} → U ⊆ POS TP TQ → POS TP TQ ∋ Union U - tp13 {U} U⊆O = tp20 U U⊆O where - ind : {x : HOD} → ({y : HOD} → x ∋ y → y ⊆ POS TP TQ → POS TP TQ ∋ Union y) → x ⊆ POS TP TQ → POS TP TQ ∋ Union x - ind {x} prev x⊆O = record { b = & ub ; pb = ? ; bx = ? } where - ub : HOD - ub = Union ( Replace' x ( λ z xz → * (Base.b (x⊆O xz) ) ) ) - tp14 : ub ∋ Union x - tp14 = ? - tp20 : (U : HOD ) → U ⊆ POS TP TQ → POS TP TQ ∋ Union U - tp20 U U⊆O = ε-induction0 { λ U → U ⊆ POS TP TQ → POS TP TQ ∋ Union U } ind U U⊆O - tp14 : {p q : HOD} → POS TP TQ ∋ p → POS TP TQ ∋ q → POS TP TQ ∋ (p ∩ q) - tp14 {p} {q} op oq = record { b = & tp15 ; pb = ? ; bx = ? } where - tp15 : HOD - tp15 = ? +_Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (base TP TQ) ? -- existence of Ultra Filter